精英家教網 > 初中數學 > 題目詳情

【題目】在日常生活中,如取款、上網等都需要密碼.有一種用因式分解法產生的密碼,方便記憶.原理是:如對于多項式x4-y4,因式分解的結果是(x-y)(x+y)·(x2+y2),若取x=9,y=9時,則各個因式的值是:(x-y)=0,(x+y)=18,x2+y2=162,于是就可以把“018162”作為一個六位數的密碼.對于多項式4x3-xy2,取x=10,y=10時,用上述方法產生的密碼共有多少種?請你分別寫出來.

【答案】產生的密碼共有三種;101030,或103010,或301010.

【解析】

試題分析:將多項式4x3-xy2提取x后再利用平方差公式分解因式,將xy的值分別代入每一個因式中計算得到各自的結果,根據閱讀材料中取密碼的方法,即可得出所求的密碼.

產生的密碼共有三種.

4x3-xy2=x(4x2-y2)=x(2x-y)(2x+y),

x=10,y=10時,x=10,2x-y=210-10=10,2x+y=210+10=30,

故密碼為:101030,或103010,或301010.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,正方形ABCD在平面直角坐標系中,且AD∥x軸,點A的坐標為(﹣4,1),點D的坐標為(0,1),點B,P都在反比例函數y= 的圖象上,且P時動點,連接OP,CP.

(1)求反比例函數y= 的函數表達式;
(2)當點P的縱坐標為 時,判斷△OCP的面積與正方形ABCD的面積的大小關系.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,C,E是直線l兩側的點,以C為圓心,CE長為半徑畫弧交l于A,B兩點,又分別以A,B為圓心,大于 AB的長為半徑畫弧,兩弧交于點D,連接CA,CB,CD,下列結論不一定正確的是(

A.CD⊥l
B.點A,B關于直線CD對稱
C.點C,D關于直線l對稱
D.CD平分∠ACB

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,拋物線y=ax2+2ax+c交x軸于A,B兩點,交y軸于點C(0,3),tan∠OAC=

(1)求拋物線的解析式;
(2)點H是線段AC上任意一點,過H作直線HN⊥x軸于點N,交拋物線于點P,求線段PH的最大值;
(3)點M是拋物線上任意一點,連接CM,以CM為邊作正方形CMEF,是否存在點M使點E恰好落在對稱軸上?若存在,請求出點M的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】解答
(1)已知﹣ 與xnym+n是同類項,求m、n的值;
(2)先化簡后求值:( ,其中a=

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某校數學興趣小組的成員小華對本班上學期期末考試數學成績(成績取整數,滿分為100分)作了統(tǒng)計分析,繪制成如下頻數分布表和頻數分布直方圖.

請你根據圖表提供的信息,解答下列問題:

(1)頻數分布表中a= ,b=

(2)補全頻數分布直方圖;

(3)數學老師準備從不低于90分的學生中選1人介紹學習經驗,那么取得了93分的小華被選上的概率是

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在矩形ABCD中(AD>AB),點EBC上一點,且DE=DA,AF⊥DE,垂足為點F,在下列結論中,不一定正確的是( 。

A. △AFD≌△DCE B. AF=AD C. AB=AF D. BE=AD﹣DF

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】據圖解答

(1)如圖1,在菱形ABCD中,CE=CF,求證:AE=AF.
(2)如圖2,AB是⊙O的直徑,PA與⊙O相切于點A,OP與⊙O相交于點C,連接CB,∠OPA=40°,求∠ABC的度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知如圖,O為坐標原點,四邊形OABC為矩形,A(10,0),C(0,4),DOA中點PBC上以每秒1個單位的速度由CB運動,設運動時間為t秒.

(1)△ODP的面積S=________.

(2)t為何值時,四邊形PODB是平行四邊形?

(3)在線段PB上是否存在一點Q,使得ODQP為菱形?若存在,t的值,并求出Q點的坐標;若不存在,請說明理由

(4)若△OPD為等腰三角形,請寫出所有滿足條件的點P的坐標(請直接寫出答案,不必寫過程)

查看答案和解析>>

同步練習冊答案