如圖,BA、BC為⊙O的弦,且BA=BC,BA⊥BC,OE⊥AB于點(diǎn)E,OF⊥BC于點(diǎn)F.
(1)求證:四邊形OEBF是正方形;
(2)若D點(diǎn)為的中點(diǎn),連接AF并過(guò)D點(diǎn)作DM⊥AF于點(diǎn)M,過(guò)B點(diǎn)作BN⊥AF于點(diǎn)N.
①試猜想線段DM、BN、MN之間的數(shù)量關(guān)系,并證明你的猜想.
②若⊙O的半徑為,求DM的長(zhǎng).

【答案】分析:(1)四邊形OEBF中,有四個(gè)角是直角,所以四邊形是矩形,又因?yàn)锽E=BF,所以矩形OEBF是正方形.
(2)①連接AD,根據(jù)已知條件,易證△ABN≌△DAM,所以DM=AN,AM=BN,所以NM=AN-AM=DM-BN.
②若已知⊙O的半徑,可以求出AB=BC=4,所以BE=OE=OF=BF=2,所以可求出AF=2,進(jìn)而求出DM=AN=
解答:解:(1)∵BA⊥BC,OE⊥AB于點(diǎn)E,OF⊥BC于點(diǎn)F,
∴∠OEB=∠OFB=∠FBE=∠BEO=90°,BE=AB,BF=BC,
∴四邊形OEBF是矩形,
又BA=BC,
∴BE=BF,
∴四邊形OEBF是正方形.

(2)①連接AD,如圖示,
∵AB=BC,
弧AB=弧BC,
∵點(diǎn)D是弧AC的中點(diǎn),
∴弧DC=弧AB=弧AD,
∴∠DAC=∠C,AD=AB,
∠BFA=∠C+∠FAC,∠MAD=∠DAC+∠FAC,
∴∠BFA=∠MAD,
而∠BFA=∠ABN,
∴∠ABN=∠MAD,
又因?yàn)椤螦NB=∠DMA=90°,
∴△ABN≌△DAM,
∴DM=AN,AM=BN,
∴NM=AN-AM=DM-BN,
即NM=DM-BN.
②∵⊙O的半徑為
∴AB=BC=4,
∴BE=OE=OF=BF=2,
根據(jù)勾股定理,,
∴BF2=NF2•AF2,即22=NF2•(22,
解得NF=,所以DM=AN=
點(diǎn)評(píng):本題主要應(yīng)用垂徑定理和相似形的知識(shí)解題,此題是一個(gè)大綜合題,難度較大,有利于培養(yǎng)同學(xué)們的鉆研精神和堅(jiān)韌不拔的意志品質(zhì).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖1,在正方形ABCD中,E是AD的中點(diǎn),F(xiàn)是BA延長(zhǎng)線上的一點(diǎn),AF=
12
AB
.(1)求證△ABE≌△ADF;
精英家教網(wǎng)
(2)閱讀下列材料:
如圖2,把△ABC沿直線BC平行移動(dòng)線段BC的長(zhǎng)度,可以變到△ECD的位置;
精英家教網(wǎng)
如圖3,以BC為軸把△ABC翻折180°,可以變到△DBC的位置;
精英家教網(wǎng)
如圖4,以點(diǎn)A為中心把△ABC旋轉(zhuǎn)180°,可以變到△AED的位置.
精英家教網(wǎng)
像這樣,其中一個(gè)三角形是由另一個(gè)三角形按平行移動(dòng)、翻折、旋轉(zhuǎn)等方法變成的,這種只改變位置,不改變形狀大小的圖形變換,叫做三角形的全等變換.
(3)回答下列問(wèn)題:
①在圖1中,可以通過(guò)平行移動(dòng)、翻折、旋轉(zhuǎn)中的哪一種方法使△ABE變到△ADF的位置,
答:
 

②指出圖1中,線段BE與DF之間的關(guān)系.
答:
 
闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻锝夊箣閿濆憛鎾绘煕閵堝懎顏柡灞剧洴楠炴﹢鎳犻澶嬓滈梻浣规偠閸斿秶鎹㈤崘顔嘉﹂柛鏇ㄥ灠閸愨偓濡炪倖鍔﹀鈧紒顔煎缁辨挻鎷呴幓鎺嶅濠电姰鍨煎▔娑㈩敄閸曨厽宕查柛鈩冪⊕閻撳繘鏌涢锝囩畺闁革絾妞介弻娑㈡晲閸涱喛纭€缂備浇椴哥敮锟犲箖閳哄懏顥堟繛鎴炲笚閻庝即姊绘担鍛婃儓闁活剙銈稿畷浼村冀椤撶姴绁﹂梺纭呮彧缁犳垹绮诲☉銏♀拻闁割偆鍠撻埊鏇熴亜閺傚灝顏慨濠勭帛閹峰懘宕ㄦ繝鍌涙畼濠电儑绲藉ú锕€顪冩禒瀣櫜闁绘劖娼欑欢鐐烘煙闁箑鍔﹂柨鏇炲€归悡鏇㈡煛閸ャ儱濡奸柣蹇曞У娣囧﹪顢曢敐蹇氣偓鍧楁煛鐏炲墽娲撮柍銉畵楠炲鈹戦崶鈺€澹曠紓鍌氬€风粈渚€顢栭崨顖涘床闁圭増婢橀悡姗€鏌熸潏楣冩闁稿﹦鍏橀弻銈囧枈閸楃偛顫梺鍛婃煥閹诧紕鎹㈠☉姘e亾濞戞瑡缂氶柣顓滃€曢湁婵犲﹤绨肩花缁樸亜閺囶亞绋荤紒缁樼箓椤繈顢橀悢鍓蹭户闂傚倷鑳剁划顖涚仚闁诲繐绻戦悷鈺佺暦閹扮増鍊烽柣鎴炃氶幏娲煟鎼粹剝璐″┑顔炬暬婵℃挳宕橀埡鈧换鍡涙煟閹邦厽缍戞繛鎼枟椤ㄣ儵鎮欏顔煎壉濡炪倧濡囨晶妤呭箚閺冨牊鏅查柛銉╊棑鎼村﹪姊婚崒娆掑厡缂侇噮鍨跺畷婵嬫晝閸屾氨顦┑鐐叉閹稿摜绮堟径鎰厪闁割偅绻冮ˉ鎾趁瑰⿰鍕煁闁靛洤瀚伴獮妯兼崉閻╂帇鍨介弻娑樜熼搹瑙勬喖濡炪們鍔婇崕鐢稿箖濞嗘挸绠甸柟鐑樻尰椤斿嫰姊洪崜褏甯涢柣妤冨█瀵鈽夊Ο閿嬵潔闂佸憡顨堥崑鐐烘倶閸喓绠鹃悗鐢登归宀勬煕濞嗗繐鏆欐い顐㈢箻閹煎綊宕烽鐙呯床婵犳鍠楅〃鍛涘▎鎾村仼闁割偅娲橀埛鎴犵磽娴g櫢渚涙繛鍫熸閺屻劑寮撮妸銈夊仐闂佺粯渚楅崰娑氱不濞戞ǚ妲堟繛鍡樺灥婵悂鏌f惔锛勭暛闁稿骸宕灋鐎光偓閸曨偆顔嗗┑鐐叉▕娴滄繈鍩涢幋锔界厱婵炴垶锕崝鐔虹磼閻樿櫕宕岄柟顔筋殔椤繈鎮℃惔锛勭潉闂備浇妗ㄧ粈浣虹矓閻熼偊鍤曟い鏇楀亾鐎规洘甯掗オ浼村椽閸愵亜绨ラ梻鍌氬€风粈渚€骞栭銈嗗仏妞ゆ劧绠戠壕鍧楁煙閹澘袚闁稿鏅滅换娑橆啅椤旇崵鍑归梺缁樻尰缁嬫垿婀侀梺鎸庣箓閹冲繘骞夐幖浣告瀬闁割偅鎯婇弮鍫熷亹闂傚牊绋愮划璺衡攽閻愬弶鈻曢柛娆忓暣婵″瓨绗熼埀顒€顕f禒瀣垫晣闁绘劙娼ч獮鎰版⒒娴e憡鍟為柛鏃€鍨垮畷婵嗩吋婢跺鈧爼鏌涢鐘插姕闁稿﹦鏁婚幃宄扳枎韫囨搩浠剧紓浣插亾闁告劏鏂傛禍婊堟煏婵炲灝鍔甸棅顒夊墯椤ㄣ儵鎮欑拠褑鍚悗娈垮枙缁瑩銆佸鈧幃娆撴濞戞ḿ顔囬梻鍌氬€风粈渚€骞夐敓鐘茬闁硅揪绠戠粈澶愬箹濞n剙濡肩痪鎯х秺閺屻劑鎮ら崒娑橆伓

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,BA與半徑為2的⊙O相切于點(diǎn)A,C為⊙O上一點(diǎn),圓心O在BC上.若∠B=∠C,則AC=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,BA、BC為⊙O的弦,且BA=BC,BA⊥BC,OE⊥AB于點(diǎn)E,OF⊥BC于點(diǎn)F.
(1)求證:四邊形OEBF是正方形;
(2)若D點(diǎn)為
AC
的中點(diǎn),連接AF并過(guò)D點(diǎn)作DM⊥AF于點(diǎn)M,過(guò)B點(diǎn)作BN⊥AF于點(diǎn)N.
①試猜想線段DM、BN、MN之間的數(shù)量關(guān)系,并證明你的猜想.
②若⊙O的半徑為2
2
,求DM的長(zhǎng).
闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻锝夊箣閿濆憛鎾绘煕閵堝懎顏柡灞剧洴楠炴﹢鎳犻澶嬓滈梻浣规偠閸斿秶鎹㈤崘顔嘉﹂柛鏇ㄥ灠閸愨偓濡炪倖鍔﹀鈧紒顔煎缁辨挻鎷呴幓鎺嶅濠电姰鍨煎▔娑㈩敄閸曨厽宕查柛鈩冪⊕閻撳繘鏌涢锝囩畺闁革絾妞介弻娑㈡晲閸涱喛纭€缂備浇椴哥敮锟犲箖閳哄懏顥堟繛鎴炲笚閻庝即姊绘担鍛婃儓闁活剙銈稿畷浼村冀椤撶姴绁﹂梺纭呮彧缁犳垹绮诲☉銏♀拻闁割偆鍠撻埊鏇熴亜閺傚灝顏慨濠勭帛閹峰懘宕ㄦ繝鍌涙畼濠电儑绲藉ú锕€顪冩禒瀣櫜闁绘劖娼欑欢鐐烘煙闁箑鍔﹂柨鏇炲€归悡鏇㈡煛閸ャ儱濡奸柣蹇曞У娣囧﹪顢曢敐蹇氣偓鍧楁煛鐏炲墽娲撮柍銉畵楠炲鈹戦崶鈺€澹曠紓鍌氬€风粈渚€顢栭崨顖涘床闁圭増婢橀悡姗€鏌熸潏楣冩闁稿﹦鍏橀弻銈囧枈閸楃偛顫梺鍛婃煥閹诧紕鎹㈠☉姘e亾濞戞瑡缂氶柣顓滃€曢湁婵犲﹤绨肩花缁樸亜閺囶亞绋荤紒缁樼箓椤繈顢橀悢鍓蹭户闂傚倷鑳剁划顖涚仚闁诲繐绻戦悷鈺佺暦閹扮増鍊烽柣鎴炃氶幏娲煟鎼粹剝璐″┑顔炬暬婵℃挳宕橀埡鈧换鍡涙煟閹邦厽缍戞繛鎼枟椤ㄣ儵鎮欏顔煎壉濡炪倧濡囨晶妤呭箚閺冨牊鏅查柛銉╊棑鎼村﹪姊婚崒娆掑厡缂侇噮鍨跺畷婵嬫晝閸屾氨顦┑鐐叉閹稿摜绮堟径鎰厪闁割偅绻冮ˉ鎾趁瑰⿰鍕煁闁靛洤瀚伴獮妯兼崉閻╂帇鍨介弻娑樜熼搹瑙勬喖濡炪們鍔婇崕鐢稿箖濞嗘挸绠甸柟鐑樻尰椤斿嫰姊洪崜褏甯涢柣妤冨█瀵鈽夊Ο閿嬵潔闂佸憡顨堥崑鐐烘倶閸喓绠鹃悗鐢登归宀勬煕濞嗗繐鏆欐い顐㈢箻閹煎綊宕烽鐙呯床婵犳鍠楅〃鍛涘▎鎾村仼闁割偅娲橀埛鎴犵磽娴g櫢渚涙繛鍫熸閺屻劑寮撮妸銈夊仐闂佺粯渚楅崰娑氱不濞戞ǚ妲堟繛鍡樺灥婵悂鏌f惔锛勭暛闁稿骸宕灋鐎光偓閸曨偆顔嗗┑鐐叉▕娴滄繈鍩涢幋锔界厱婵炴垶锕崝鐔虹磼閻樿櫕宕岄柟顔筋殔椤繈鎮℃惔锛勭潉闂備浇妗ㄧ粈浣虹矓閻熼偊鍤曟い鏇楀亾鐎规洘甯掗オ浼村椽閸愵亜绨ラ梻鍌氬€风粈渚€骞栭銈嗗仏妞ゆ劧绠戠壕鍧楁煙閹澘袚闁稿鏅滅换娑橆啅椤旇崵鍑归梺缁樻尰缁嬫垿婀侀梺鎸庣箓閹冲繘骞夐幖浣告瀬闁割偅鎯婇弮鍫熷亹闂傚牊绋愮划璺衡攽閻愬弶鈻曢柛娆忓暣婵″瓨绗熼埀顒€顕f禒瀣垫晣闁绘劙娼ч獮鎰版⒒娴e憡鍟為柛鏃€鍨垮畷婵嗩吋婢跺鈧爼鏌涢鐘插姕闁稿﹦鏁婚幃宄扳枎韫囨搩浠剧紓浣插亾闁告劏鏂傛禍婊堟煏婵炲灝鍔甸棅顒夊墯椤ㄣ儵鎮欑拠褑鍚悗娈垮枙缁瑩銆佸鈧幃娆撴濞戞ḿ顔囬梻鍌氬€风粈渚€骞夐敓鐘茬闁硅揪绠戠粈澶愬箹濞n剙濡肩痪鎯х秺閺屻劑鎮ら崒娑橆伓

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,BA、BC為⊙O的弦,且BA=BC,BA⊥BC,OE⊥AB于點(diǎn)E,OF⊥BC于點(diǎn)F.
(1)求證:四邊形OEBF是正方形;
(2)若D點(diǎn)為數(shù)學(xué)公式的中點(diǎn),連接AF并過(guò)D點(diǎn)作DM⊥AF于點(diǎn)M,過(guò)B點(diǎn)作BN⊥AF于點(diǎn)N.
①試猜想線段DM、BN、MN之間的數(shù)量關(guān)系,并證明你的猜想.
②若⊙O的半徑為數(shù)學(xué)公式,求DM的長(zhǎng).

闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻锝夊箣閿濆憛鎾绘煕閵堝懎顏柡灞剧洴楠炴﹢鎳犻澶嬓滈梻浣规偠閸斿秶鎹㈤崘顔嘉﹂柛鏇ㄥ灠閸愨偓濡炪倖鍔﹀鈧紒顔煎缁辨挻鎷呴幓鎺嶅濠电姰鍨煎▔娑㈩敄閸曨厽宕查柛鈩冪⊕閻撳繘鏌涢锝囩畺闁革絾妞介弻娑㈡晲閸涱喛纭€缂備浇椴哥敮锟犲箖閳哄懏顥堟繛鎴炲笚閻庝即姊绘担鍛婃儓闁活剙銈稿畷浼村冀椤撶姴绁﹂梺纭呮彧缁犳垹绮诲☉銏♀拻闁割偆鍠撻埊鏇熴亜閺傚灝顏慨濠勭帛閹峰懘宕ㄦ繝鍌涙畼濠电儑绲藉ú锕€顪冩禒瀣櫜闁绘劖娼欑欢鐐烘煙闁箑鍔﹂柨鏇炲€归悡鏇㈡煛閸ャ儱濡奸柣蹇曞У娣囧﹪顢曢敐蹇氣偓鍧楁煛鐏炲墽娲撮柍銉畵楠炲鈹戦崶鈺€澹曠紓鍌氬€风粈渚€顢栭崨顖涘床闁圭増婢橀悡姗€鏌熸潏楣冩闁稿﹦鍏橀弻銈囧枈閸楃偛顫梺鍛婃煥閹诧紕鎹㈠☉姘e亾濞戞瑡缂氶柣顓滃€曢湁婵犲﹤绨肩花缁樸亜閺囶亞绋荤紒缁樼箓椤繈顢橀悢鍓蹭户闂傚倷鑳剁划顖涚仚闁诲繐绻戦悷鈺佺暦閹扮増鍊烽柣鎴炃氶幏娲煟鎼粹剝璐″┑顔炬暬婵℃挳宕橀埡鈧换鍡涙煟閹邦厽缍戞繛鎼枟椤ㄣ儵鎮欏顔煎壉濡炪倧濡囨晶妤呭箚閺冨牊鏅查柛銉╊棑鎼村﹪姊婚崒娆掑厡缂侇噮鍨跺畷婵嬫晝閸屾氨顦┑鐐叉閹稿摜绮堟径鎰厪闁割偅绻冮ˉ鎾趁瑰⿰鍕煁闁靛洤瀚伴獮妯兼崉閻╂帇鍨介弻娑樜熼搹瑙勬喖濡炪們鍔婇崕鐢稿箖濞嗘挸绠甸柟鐑樻尰椤斿嫰姊洪崜褏甯涢柣妤冨█瀵鈽夊Ο閿嬵潔闂佸憡顨堥崑鐐烘倶閸喓绠鹃悗鐢登归宀勬煕濞嗗繐鏆欐い顐㈢箻閹煎綊宕烽鐙呯床婵犳鍠楅〃鍛涘▎鎾村仼闁割偅娲橀埛鎴犵磽娴g櫢渚涙繛鍫熸閺屻劑寮撮妸銈夊仐闂佺粯渚楅崰娑氱不濞戞ǚ妲堟繛鍡樺灥婵悂鏌f惔锛勭暛闁稿骸宕灋鐎光偓閸曨偆顔嗗┑鐐叉▕娴滄繈鍩涢幋锔界厱婵炴垶锕崝鐔虹磼閻樿櫕宕岄柟顔筋殔椤繈鎮℃惔锛勭潉闂備浇妗ㄧ粈浣虹矓閻熼偊鍤曟い鏇楀亾鐎规洘甯掗オ浼村椽閸愵亜绨ラ梻鍌氬€风粈渚€骞栭銈嗗仏妞ゆ劧绠戠壕鍧楁煙閹澘袚闁稿鏅滅换娑橆啅椤旇崵鍑归梺缁樻尰缁嬫垿婀侀梺鎸庣箓閹冲繘骞夐幖浣告瀬闁割偅鎯婇弮鍫熷亹闂傚牊绋愮划璺衡攽閻愬弶鈻曢柛娆忓暣婵″瓨绗熼埀顒€顕f禒瀣垫晣闁绘劙娼ч獮鎰版⒒娴e憡鍟為柛鏃€鍨垮畷婵嗩吋婢跺鈧爼鏌涢鐘插姕闁稿﹦鏁婚幃宄扳枎韫囨搩浠剧紓浣插亾闁告劏鏂傛禍婊堟煏婵炲灝鍔甸棅顒夊墯椤ㄣ儵鎮欑拠褑鍚悗娈垮枙缁瑩銆佸鈧幃娆撴濞戞ḿ顔囬梻鍌氬€风粈渚€骞夐敓鐘茬闁硅揪绠戠粈澶愬箹濞n剙濡肩痪鎯х秺閺屻劑鎮ら崒娑橆伓

查看答案和解析>>

同步練習(xí)冊(cè)答案
闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻锝夊箣閿濆憛鎾绘煕閵堝懎顏柡灞诲€濆畷顐﹀Ψ閿旇姤鐦庡┑鐐差嚟婵敻鎳濇ィ鍐ㄧ厴闁瑰鍋涚粻鐘绘⒑缁嬪尅鏀绘い銊ユ楠炲牓濡歌閸嬫捇妫冨☉娆忔殘閻庤娲栧鍫曞箞閵娿儺娓婚悹鍥紦婢规洟姊绘担铏瑰笡濞撴碍顨婂畷鏉库槈濮樺彉绗夊┑鐐村灦鑿ゆ俊鎻掔墛缁绘盯宕卞Ο鍝勵潔濡炪倕绻掗崰鏍ь潖缂佹ɑ濯撮柤鎭掑劤閵嗗﹪姊洪棃鈺冪Ф缂佺姵鎹囬悰顔跨疀濞戞瑦娅㈤梺璺ㄥ櫐閹凤拷 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐劤缂嶅﹪寮婚悢鍏尖拻閻庨潧澹婂Σ顔剧磼閻愵剙鍔ょ紓宥咃躬瀵鎮㈤崗灏栨嫽闁诲酣娼ф竟濠偽i鍓х<闁绘劦鍓欑粈鍐┿亜閺囧棗娲ら悡姗€鏌熸潏楣冩闁稿鍔欓弻娑樷枎韫囷絾效闂佽鍠楅悷褏妲愰幘瀛樺闁告繂瀚烽埀顒€鐭傞弻娑㈠Ω閵壯冪厽閻庢鍠栭…閿嬩繆閹间礁鐓涢柛灞剧煯缁ㄤ粙姊绘担鍛靛綊寮甸鍌滅煓闁硅揪瀵岄弫鍌炴煥閻曞倹瀚�