如圖,AB為⊙O的直徑,AB=4,點C在⊙O上,CF⊥OC,且CF=BF.
1.證明BF是⊙O的切線;
2.設AC與BF的延長線交于點M,若MC=6,求∠MCF的大小.
1.見解析。
2.30°
【解析】證明:連接OF.
(1) ∵ CF⊥OC,
∴ ∠FCO=90°.
∵ OC=OB,
∴ ∠BCO=∠CBO.
∵ FC=FB,
∴ ∠FCB=∠FBC.
∴ ∠BCO+∠FCB =∠CBO+∠FBC.
即 ∠FBO=∠FCO=90°.
∴ OB⊥BF.
∵ OB是⊙O的半徑,
∴ BF是⊙O的切線.
(2)∵ ∠FBO=∠FCO=90°,
∴ ∠MCF+∠ACO =90°,∠M+∠A =90°.
∵ OA=OC,
∴ ∠ACO=∠A.
∴ ∠FCM=∠M.
易證△ACB∽△ABM,
∴ .
∵ AB=4,MC=6,
∴ AC=2.
∴ AM=8,BM==.
∴cos∠MC F = cosM ==.
∴ ∠MCF=30°.
科目:初中數學 來源:江蘇省張家港市2012年中考網上閱卷適應性考試數學試題 題型:013
如圖,AB為⊙O的直甲徑,PD切⊙O于點C,交AB的延長線于D,且CO=CD,則∠PCA=
A.60°
B.65°
C.67.5°
D.75°
查看答案和解析>>
科目:初中數學 來源:2008年福建省福州一中高中招生(面向福州以外)綜合素質測試數學試卷(解析版) 題型:選擇題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com