(2013•貴陽模擬)在△ABC中,AB=5,AC=4,BC=3,則cosA等于( 。
分析:根據(jù)△ABC中,AB=5,AC=4,BC=3可利用勾股定理逆定理判斷出△ABC是直角三角形,再根據(jù)余弦定義可得答案.
解答:解:∵32+42=52,
∴BC2+AC2=AB2
∴△ABC是直角三角形,
∴cosA=
AC
AB
=
4
5
,
故選:D.
點(diǎn)評(píng):此題主要考查了勾股定理逆定理,以及銳角三角函數(shù)定義,關(guān)鍵是掌握勾股定理逆定理:如果三角形的三邊長a,b,c滿足a2+b2=c2,那么這個(gè)三角形就是直角三角形.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•貴陽模擬)反比例函數(shù)y=
m-1x
的圖象在第一、三象限,則m的取值范圍是
m>1
m>1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•貴陽模擬)從下列四張卡中任取一張,卡片上的圖形是軸對(duì)稱圖形的概率為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•貴陽模擬)從2,5,7,10.13這五個(gè)數(shù)中任取一個(gè)數(shù),這個(gè)數(shù)能被5整除的概率是
2
5
2
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•貴陽模擬)如圖,正方形ABCD和正方形EFGH的邊長分別為2
2
2
,對(duì)角線BD、FH都在直線l上,O1、O2分別為正方形的中心,線段O1O2的長叫做兩個(gè)正方形的中心距,當(dāng)中心O2在直線l上平移時(shí),正方形EFGH也隨之平移,在平移時(shí)正方形EFGH的形狀、大小沒有變化.當(dāng)中心O2在直線l上平移都兩個(gè)正方形的邊只有兩個(gè)公共點(diǎn)時(shí),中心距O1O2的取值范圍是
1<O1O2<3
1<O1O2<3

查看答案和解析>>

同步練習(xí)冊(cè)答案