(2013年四川南充6分)如圖,在平行四邊形ABCD中,對(duì)角線AC,BD交于點(diǎn)O,經(jīng)過點(diǎn)O的直線交AB于E,交CD于F.

求證:OE=OF.
證明:∵四邊形ABCD是平行四邊形,∴OA=OC,AB∥CD 。
∴∠OAE=∠OCF 。
∵∠AOE=∠COF ,∴△OAE≌△OCF(ASA)。
∴OE=OF。
由四邊形ABCD是平行四邊形,可得OA=OC,AB∥CD,又由∠AOE=∠COF,易證得△OAE≌△OCF,則可得OE=OF。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,AC⊥CD,垂足為點(diǎn)C,BD⊥CD,垂足為點(diǎn)D,AB與CD交于點(diǎn)O.若AC=1,BD=2,CD=4,則AB=     

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,在矩形ABCD中,AB<BC,AC,BD相交于點(diǎn)O,則圖中等腰三角形的個(gè)數(shù)是
A.8B.6C.4D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

小明、小華在一棟電梯樓前感慨樓房真高.小明說(shuō):“這樓起碼20層!”小華卻不以為然:“20層?我看沒有,數(shù)數(shù)就知道了!”小明說(shuō):“有本事,你不用數(shù)也能明白!”小華想了想說(shuō):“沒問題!讓我們來(lái)量一量吧!”小明、小華在樓體兩側(cè)各選A、B兩點(diǎn),測(cè)量數(shù)據(jù)如圖,其中矩形CDEF表示樓體,AB=150米,CD=10米,∠A=30°,∠B=45°,(A、C、D、B四點(diǎn)在同一直線上)問:

(1)樓高多少米?
(2)若每層樓按3米計(jì)算,你支持小明還是小華的觀點(diǎn)呢?請(qǐng)說(shuō)明理由.(參考數(shù)據(jù):≈1.73,≈1.41,≈2.24)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(2013年四川資陽(yáng)11分)在一個(gè)邊長(zhǎng)為a(單位:cm)的正方形ABCD中,點(diǎn)E、M分別是線段AC,CD上的動(dòng)點(diǎn),連結(jié)DE并延長(zhǎng)交正方形的邊于點(diǎn)F,過點(diǎn)M作MN⊥DF于H,交AD于N.

(1)如圖1,當(dāng)點(diǎn)M與點(diǎn)C重合,求證:DF=MN;
(2)如圖2,假設(shè)點(diǎn)M從點(diǎn)C出發(fā),以1cm/s的速度沿CD向點(diǎn)D運(yùn)動(dòng),點(diǎn)E同時(shí)從點(diǎn)A出發(fā),以cm/s速度沿AC向點(diǎn)C運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為t(t>0);
①判斷命題“當(dāng)點(diǎn)F是邊AB中點(diǎn)時(shí),則點(diǎn)M是邊CD的三等分點(diǎn)”的真假,并說(shuō)明理由.
②連結(jié)FM、FN,△MNF能否為等腰三角形?若能,請(qǐng)寫出a,t之間的關(guān)系;若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(2013年四川廣安6分)如圖,在平行四邊形ABCD中,AE∥CF,求證:△ABE≌△CDF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,正方形ABCD的邊長(zhǎng)為4,點(diǎn)P在DC邊上且DP=1,點(diǎn)Q是AC上一動(dòng)點(diǎn),則DQ+PQ的最小值為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,邊長(zhǎng)為1的菱形ABCD中,∠DAB=60°.連結(jié)對(duì)角線AC,以AC為邊作第二個(gè)菱形ACEF,使∠FAC=60°.連結(jié)AE,再以AE為邊作第三個(gè)菱形AEGH使∠HAE=60°…按此規(guī)律所作的第n個(gè)菱形的邊長(zhǎng)是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,矩形ABCD的兩條對(duì)角線相交于點(diǎn)O,∠AOD=60°,AD=2,則AC的長(zhǎng)是
A.2B.4C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案