如圖AB是⊙O的直徑,∠A=30°,延長OB到D使BD=OB.
(1)△OBC是否是等邊三角形?說明理由;
(2)求證:DC是⊙O的切線.

【答案】分析:(1)根據(jù)同弧所對的圓周角等于它所對的圓心角的一半,可知∠BOC=60°,又OB=OC,依此可以證明△OBC是否是等邊三角形.
(2)要證PC是⊙O的切線,只要證明∠DCO=90°即可.
解答:(1)解:△OBC是等邊三角形.理由如下:
∵∠A=30°,
∴∠BOC=60°,
∵OB=OC,
∴△OBC是等邊三角形.

(2)證明:∵BD=OB,△OBC是等邊三角形.
∴∠OCB=∠OBC=60°,BD=BC.
∴∠BCD=30°.
∴∠OCD=90°.
∴DC是⊙O的切線.
點(diǎn)評:本題考查了等邊三角形的判定和切線的判定.
注意:有一個角是60°的等腰三角形是等邊三角形;
要證某線是圓的切線,已知此線過圓上某點(diǎn),連接圓心與這點(diǎn)(即為半徑),再證垂直即可.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖AB是⊙O的直徑,C是⊙O上的一點(diǎn),若AC=8cm,AB=10cm,OD⊥BC于點(diǎn)D,求BD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖AB是⊙O的直徑,弦DC⊥AB于點(diǎn)E,在
AD
上取一點(diǎn)F,連接精英家教網(wǎng)CF交AB于點(diǎn)M,連接DF并延長交BA的延長線于點(diǎn)N.
求證:
(1)∠DFC=∠DOB;
(2)MN•OM=MC•FM.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖AB是⊙O的直徑,∠D=35°,則∠AOC=
70°
70°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•自貢)如圖AB是⊙O的直徑,AP是⊙O的切線,A是切點(diǎn),BP與⊙O交于點(diǎn)C.
(1)若AB=2,∠P=30°,求AP的長;
(2)若D為AP的中點(diǎn),求證:直線CD是⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•南昌)如圖AB是半圓的直徑,圖1中,點(diǎn)C在半圓外;圖2中,點(diǎn)C在半圓內(nèi),請僅用無刻度的直尺按要求畫圖.
(1)在圖1中,畫出△ABC的三條高的交點(diǎn);
(2)在圖2中,畫出△ABC中AB邊上的高.

查看答案和解析>>

同步練習(xí)冊答案