如圖是某比賽場館的平面圖,根據(jù)距離比賽場地的遠近和視角的不同,將觀賽場地劃分成A、B、C三個不同的票價區(qū).其中與場地邊緣MN的視角大于或等于45°,并且距場地邊緣MN的距離不超過30m的區(qū)域劃分為A票區(qū),B票區(qū)如圖所示,剩下的為C票區(qū).(π取3)
(1)請你利用尺規(guī)作圖,在觀賽場地中,作出A票區(qū)所在的區(qū)域(只要作出圖形,保留作圖痕跡,不要求寫作法);
(2)如果每個座位所占的平均面積是0.8平方米,請估算A票區(qū)有多少個座位.

解:(1)如圖,以線段MN、EF與、所圍成的區(qū)域就是所作的A票區(qū).

(2)連接OM、ON、OE、OF,設(shè)MN的中垂線與MN、EF分別相交于點G和H.
由題意,得∠MON=90°.
∵OG⊥MN,OH⊥EF,
OG=OH=15,
∴∠EOF=∠MON=90°.

∴SA=(S扇形FOM+S扇形EON)+(S△OMN+S△EOF)=πr2+r2≈1125(米2).
∴1125÷0.8≈1406.
∴A票區(qū)約有1446個座位.
分析:(1)可以M、N為圓心,30為半徑交于O點如圖以線段MN、EF與、所圍成的區(qū)域就是所作的A票區(qū).
(2)求座位就是求三角形EOF,MON和扇形FOM和EON的面積和.那么先求出扇形的半徑即可.
點評:本題考查了尺規(guī)作圖和盲區(qū)的定義等知識點,利用數(shù)學知識解決實際問題是中學數(shù)學的重要內(nèi)容.解決此問題的關(guān)鍵在于正確理解題意的基礎(chǔ)上建立數(shù)學模型,把實際問題轉(zhuǎn)化為數(shù)學問題.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

如圖是某比賽場館的平面圖,根據(jù)距離比賽場地的遠近和視角的不同,將觀賽場地劃分成A、B、C三個不同的票價區(qū).其中與場地邊緣MN的視角大于或等于45°,并且距場地邊緣MN的距離不超過30m的區(qū)域劃分為A票區(qū),B票區(qū)如圖所示,剩下的為C票區(qū).(π取3)
(1)請你利用尺規(guī)作圖,在觀賽場地中,作出A票區(qū)所在的區(qū)域(只要作出圖形,保留作圖痕跡,不要求寫作法);
(2)如果每個座位所占的平均面積是0.8平方米,請估算A票區(qū)有多少個座位.精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源:第3章《圓》中考題集(84):3.5 平行投影和中心投影(解析版) 題型:解答題

如圖是某比賽場館的平面圖,根據(jù)距離比賽場地的遠近和視角的不同,將觀賽場地劃分成A、B、C三個不同的票價區(qū).其中與場地邊緣MN的視角大于或等于45°,并且距場地邊緣MN的距離不超過30m的區(qū)域劃分為A票區(qū),B票區(qū)如圖所示,剩下的為C票區(qū).(π取3)
(1)請你利用尺規(guī)作圖,在觀賽場地中,作出A票區(qū)所在的區(qū)域(只要作出圖形,保留作圖痕跡,不要求寫作法);
(2)如果每個座位所占的平均面積是0.8平方米,請估算A票區(qū)有多少個座位.

查看答案和解析>>

科目:初中數(shù)學 來源:2008年全國中考數(shù)學試題匯編《投影與視圖》(04)(解析版) 題型:解答題

(2008•麗水)如圖是某比賽場館的平面圖,根據(jù)距離比賽場地的遠近和視角的不同,將觀賽場地劃分成A、B、C三個不同的票價區(qū).其中與場地邊緣MN的視角大于或等于45°,并且距場地邊緣MN的距離不超過30m的區(qū)域劃分為A票區(qū),B票區(qū)如圖所示,剩下的為C票區(qū).(π取3)
(1)請你利用尺規(guī)作圖,在觀賽場地中,作出A票區(qū)所在的區(qū)域(只要作出圖形,保留作圖痕跡,不要求寫作法);
(2)如果每個座位所占的平均面積是0.8平方米,請估算A票區(qū)有多少個座位.

查看答案和解析>>

科目:初中數(shù)學 來源:2008年全國中考數(shù)學試題匯編《三角形》(17)(解析版) 題型:解答題

(2008•麗水)如圖是某比賽場館的平面圖,根據(jù)距離比賽場地的遠近和視角的不同,將觀賽場地劃分成A、B、C三個不同的票價區(qū).其中與場地邊緣MN的視角大于或等于45°,并且距場地邊緣MN的距離不超過30m的區(qū)域劃分為A票區(qū),B票區(qū)如圖所示,剩下的為C票區(qū).(π取3)
(1)請你利用尺規(guī)作圖,在觀賽場地中,作出A票區(qū)所在的區(qū)域(只要作出圖形,保留作圖痕跡,不要求寫作法);
(2)如果每個座位所占的平均面積是0.8平方米,請估算A票區(qū)有多少個座位.

查看答案和解析>>

同步練習冊答案