26、我們將能完全覆蓋某平面圖形的最小圓稱(chēng)為該平面圖形的最小覆蓋圓.例如線段AB的最小覆蓋圓就是以線段AB為直徑的圓.
(1)請(qǐng)分別作出下圖中兩個(gè)三角形的最小覆蓋圓(要求用尺規(guī)作圖,保留作圖痕跡,不寫(xiě)作法);
(2)探究三角形的最小覆蓋圓有何規(guī)律?請(qǐng)寫(xiě)出你所得到的結(jié)論(不要求證明).
分析:第一個(gè)三角形是銳角三角形,那么它的最小覆蓋圓應(yīng)該是三角形ABC的外接圓;
第二個(gè)三角形是鈍角三角形,那么它的最小覆蓋圓應(yīng)該是以BC為直徑的圓.
解答:解:(1)如圖;

(2)銳角三角形(和直角三角形)的最小覆蓋圓是其外接圓;鈍角三角形的最小覆蓋圓是以其最長(zhǎng)邊為直徑的圓.
點(diǎn)評(píng):此題需注意的是圖②三角形的最小覆蓋圓是以BC為直徑的圓;其外接圓雖然能完全覆蓋△ABC,但并不是最小覆蓋圓.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

95、我們將能完全覆蓋某平面圖形的最小圓稱(chēng)為該平面圖形的最小覆蓋圓.例如線段AB的最小覆蓋圓就是以線段AB為直徑的圓.
(1)請(qǐng)分別作出圖1中兩個(gè)三角形的最小覆蓋圓;(要求用尺規(guī)作圖,保留作圖痕跡,不寫(xiě)作法)
(2)探究三角形的最小覆蓋圓有何規(guī)律?請(qǐng)寫(xiě)出你所得到的結(jié)論;(不要求證明)
(3)某地有四個(gè)村莊E,F(xiàn),G,H(其位置如圖2所示),現(xiàn)擬建一個(gè)電視信號(hào)中轉(zhuǎn)站,為了使這四個(gè)村莊的居民都能接收到電視信號(hào),且使中轉(zhuǎn)站所需發(fā)射功率最。ň嚯x越小,所需功率越。酥修D(zhuǎn)站應(yīng)建在何處請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

我們將能完全覆蓋某平面圖形的最小圓稱(chēng)為該平面圖形的最小覆蓋圓.例如線段AB的最小覆蓋圓就是以線段AB為直徑的圓.若在△ABC中,AB=5,AC=3,BC=4,則△ABC的最小覆蓋圓的半徑是
 
;若在△ABC中,AB=AC,BC=6,∠BAC=120°,則△ABC的最小覆蓋圓的半徑是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2008年初中畢業(yè)升學(xué)考試(江蘇連云港卷)數(shù)學(xué)(帶解析) 題型:解答題

我們將能完全覆蓋某平面圖形的最小圓稱(chēng)為該平面圖形的最小覆蓋圓.例如線段的最小覆蓋圓就是以線段為直徑的圓.
(1)請(qǐng)分別作出圖1中兩個(gè)三角形的最小覆蓋圓(要求用尺規(guī)作圖,保留作圖痕跡,不寫(xiě)作法);

(2)探究三角形的最小覆蓋圓有何規(guī)律?請(qǐng)寫(xiě)出你所得到的結(jié)論(不要求證明);
(3)某地有四個(gè)村莊(其位置如圖2所示),現(xiàn)擬建一個(gè)電視信號(hào)中轉(zhuǎn)站,為了使這四個(gè)村莊的居民都能接收到電視信號(hào),且使中轉(zhuǎn)站所需發(fā)射功率最小(距離越小,所需功率越小),此中轉(zhuǎn)站應(yīng)建在何處?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2008年初中畢業(yè)升學(xué)考試(江蘇連云港卷)數(shù)學(xué)(解析版) 題型:解答題

我們將能完全覆蓋某平面圖形的最小圓稱(chēng)為該平面圖形的最小覆蓋圓.例如線段的最小覆蓋圓就是以線段為直徑的圓.

(1)請(qǐng)分別作出圖1中兩個(gè)三角形的最小覆蓋圓(要求用尺規(guī)作圖,保留作圖痕跡,不寫(xiě)作法);

(2)探究三角形的最小覆蓋圓有何規(guī)律?請(qǐng)寫(xiě)出你所得到的結(jié)論(不要求證明);

(3)某地有四個(gè)村莊(其位置如圖2所示),現(xiàn)擬建一個(gè)電視信號(hào)中轉(zhuǎn)站,為了使這四個(gè)村莊的居民都能接收到電視信號(hào),且使中轉(zhuǎn)站所需發(fā)射功率最。ň嚯x越小,所需功率越小),此中轉(zhuǎn)站應(yīng)建在何處?請(qǐng)說(shuō)明理由.

 

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案