(2013•連云港)小明在一次數(shù)學(xué)興趣小組活動中,對一個數(shù)學(xué)問題作如下探究:
問題情境:如圖1,四邊形ABCD中,AD∥BC,點E為DC邊的中點,連接AE并延長交BC的延長線于點F,求證:S四邊形ABCD=S△ABF(S表示面積)

問題遷移:如圖2:在已知銳角∠AOB內(nèi)有一個定點P.過點P任意作一條直線MN,分別交射線OA、OB于點M、N.小明將直線MN繞著點P旋轉(zhuǎn)的過程中發(fā)現(xiàn),△MON的面積存在最小值,請問當直線MN在什么位置時,△MON的面積最小,并說明理由.

實際應(yīng)用:如圖3,若在道路OA、OB之間有一村莊Q發(fā)生疫情,防疫部門計劃以公路OA、OB和經(jīng)過防疫站P的一條直線MN為隔離線,建立一個面積最小的三角形隔離區(qū)△MON.若測得∠AOB=66°,∠POB=30°,OP=4km,試求△MON的面積.(結(jié)果精確到0.1km2)(參考數(shù)據(jù):sin66°≈0.91,tan66°≈2.25,
3
≈1.73)
拓展延伸:如圖4,在平面直角坐標系中,O為坐標原點,點A、B、C、P的坐標分別為(6,0)(6,3)(
9
2
,
9
2
)、(4、2),過點p的直線l與四邊形OABC一組對邊相交,將四邊形OABC分成兩個四邊形,求其中以點O為頂點的四邊形面積的最大值.
分析:問題情境:根據(jù)可以求得△ADE≌△FCE,就可以得出S△ADE=S△FCE就可以得出結(jié)論;
問題遷移:根據(jù)問題情境的結(jié)論可以得出當直線旋轉(zhuǎn)到點P是MN的中點時S△MON最小,過點M作MG∥OB交EF于G.由全等三角形的性質(zhì)可以得出結(jié)論;
實際運用:如圖3,作PP1⊥OB,MM1⊥OB,垂足分別為P1,M1,再根據(jù)條件由三角函數(shù)值就可以求出結(jié)論;
拓展延伸:分情況討論當過點P的直線l與四邊形OABC的一組對邊OC、AB分別交于點M、N,延長OC、AB交于點D,由條件可以得出AD=6,就可以求出△OAD的面積,再根據(jù)問題遷移的結(jié)論就可以求出最大值;
當過點P的直線l與四邊形OABC的另一組對邊CB、OA分別交M、N,延長CB交x軸于T,由B、C的坐標可得直線BC的解析式,就可以求出T的坐標,從而求出△OCT的面積,再由問題遷移的結(jié)論可以求出最大值,通過比較久可以求出結(jié)論.
解答:解:問題情境:∵AD∥BC,
∴∠DAE=∠F,∠D=∠FCE.
∵點E為DC邊的中點,
∴DE=CE.
∵在△ADE和△FCE中,
∠DAE=∠F
∠D=∠FCE
DE=CE
,
∴△ADE≌△FCE(AAS),
∴S△ADE=S△FCE,
∴S四邊形ABCE+S△ADE=S四邊形ABCE+S△FCE,
即S四邊形ABCD=S△ABF;

問題遷移:出當直線旋轉(zhuǎn)到點P是MN的中點時S△MON最小,如圖2,
過點P的另一條直線EF交OA、OB于點E、F,設(shè)PF<PE,過點M作MG∥OB交EF于G,
由問題情境可以得出當P是MN的中點時S四邊形MOFG=S△MON
∵S四邊形MOFG<S△EOF,
∴S△MON<S△EOF,
∴當點P是MN的中點時S△MON最;

實際運用:如圖3,作PP1⊥OB,MM1⊥OB,垂足分別為P1,M1
在Rt△OPP1中,
∵∠POB=30°,
∴PP1=
1
2
OP=2,OP1=2
3

由問題遷移的結(jié)論知道,當PM=PN時,△MON的面積最小,
∴MM1=2PP1=4,M1P1=P1N.
在Rt△OMM1中,
tan∠AOB=
MM1
OM1

2.25=
4
OM1
,
∴OM1=
16
9
,
∴M1P1=P1N=2
3
-
16
9

∴ON=OP1+P1N=2
3
+2
3
-
16
9
=4
3
-
16
9

∴S△MON=
1
2
ON•MM1=
1
2
(4
3
-
16
9
)×4=8
3
-
32
9
≈10.3km2

拓展延伸:①如圖4,當過點P的直線l與四邊形OABC的一組對邊OC、AB分別交于點M、N,延長OC、AB交于點D,
∵C(
9
2
,
9
2
),
∴∠AOC=45°,
∴AO=AD.
∴A(6,0),
∴OA=6,
∴AD=6.
∴S△AOD=
1
2
×6×6=18,
由問題遷移的結(jié)論可知,當PN=PM時,△MND的面積最小,
∴四邊形ANMO的面積最大.
作PP1⊥OA,MM1⊥OA,垂足分別為P1,M1,
∴M1P1=P1A=2,
∴OM1=M1M=2,
∴MN∥OA,
∴S四邊形OANM=S△OMM1+S四邊形ANPP1=
1
2
×2×2+2×4=10
②如圖5,當過點P的直線l與四邊形OABC的另一組對邊CB、OA分別交M、N,延長CB交x軸于T,
∵C(
9
2
9
2
)、B(6,3),設(shè)直線BC的解析式為y=kx+b,由題意,得
9
2
=
9
2
k+b
3=6k+b
,
解得:
k=-1
b=9
,
∴y=-x+9,
當y=0時,x=9,
∴T(9,0).
∴S△OCT=
1
2
×
9
2
×
9=
81
4

由問題遷移的結(jié)論可知,當PM=PN時,△MNT的面積最小,
∴四邊形CMNO的面積最大.
∴NP1=M1P1,MM1=2PP1=4,
∴4=-x+9,
∴x=5,
∴M(5,4),
∴OM1=5.
∵P(4,2),
∴OP1=4,
∴P1M1=NP1=1,
∴ON=3,
∴NT=6.
∴S△MNT=
1
2
×4×6=12,
∴S四邊形OCMN=
81
4
-12=
33
4
<10.
∴綜上所述:截得四邊形面積的最大值為10.
點評:本題考查了由特殊到一般的數(shù)學(xué)思想的運用,全等三角形的判定及性質(zhì)的運用,勾股定理的運用,待定系數(shù)法求一次函數(shù)的解析式的運用,四邊形的面積公式的運用,三角形的面積公式的運用,分類討論思想的運用,解答時建立數(shù)學(xué)模型解答是關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•連云港)計算a2•a4的結(jié)果是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•連云港)將一包卷筒衛(wèi)生紙按如圖所示的方式擺放在水平桌面上,則它的俯視圖是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•連云港)在Rt△ABC中,∠C=90°,若sinA=
5
13
,則cosA的值為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•連云港)分解因式:4-x2=
(2-x)(2+x)
(2-x)(2+x)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•連云港)如圖,已知一次函數(shù)y=2x+2的圖象與y軸交于點B,與反比例函數(shù)y=
k1
x
的圖象的一個交點為A(1,m).過點B作AB的垂線BD,與反比例函數(shù)y=
k2
x
(x>0)的圖象交于點D(n,-2).
(1)求k1和k2的值;
(2)若直線AB、BD分別交x軸于點C、E,試問在y軸上是否存在一個點F,使得△BDF∽△ACE?若存在,求出點F的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案