【題目】我們學(xué)過二次函數(shù)的圖象的平移,如:將二次函數(shù)的圖象向左平移2個單位,再向下平移4個單位,所圖象的函數(shù)表達式是.類比二次函數(shù)的圖象的平移,我們對反比例函數(shù)的圖象作類似的變換:
(1)將的圖象向右平移1個單位,所得圖象的函數(shù)表達式為_______,再向上平移1個單位,所得圖象的函數(shù)表達式為_________;
(2)函數(shù)的圖象可由的圖象向____平移____個單位得到; 的圖象可由哪個反比例函數(shù)的圖象經(jīng)過怎樣的變換得到?
(3)一般地,函數(shù)(,且)的圖象可由哪個反比例函數(shù)的圖象經(jīng)過和怎樣的變換得到?
【答案】 y= y= 上 1
【解析】試題分析:利用二次函數(shù)平移推廣到所有函數(shù)“左加右減,上加下減,注意左右平移時,是針對x平移”
試題解析:
解:(1)y=;y=,
(2)上,1;
y=可轉(zhuǎn)化為y=+1,
它的圖象可由反比例函數(shù)的圖象先向右平移2個單位,再向上平移1個單位得到.
函數(shù)(,且)可轉(zhuǎn)化為.
當(dāng)a>0時, (,且)的圖象可由反比例函數(shù)的圖象,
左平移a個單位,再向上平移一個單位得到.
當(dāng)a<0時, (,且)的圖象可由反比例函數(shù)的圖象向左平移-a個單位,再向上平移一個單位得到.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在綜合實踐活動中,同學(xué)們制作了兩塊直角三角形硬紙板,一塊含有30°角,一塊含有45°角,并且有一條直角邊是相等的.現(xiàn)將含45°角的直角三角形硬紙板重疊放在含30°角的直角三角形硬紙板上,讓它們的直角完全重合.如圖2,若相等的直角邊AC長為12cm,求另一條直角邊沒有重疊部分BD的長(結(jié)果用根號表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在等邊三角形ABC中,點P在△ABC內(nèi),點Q在△ABC外,且∠ABP=∠ACQ,BP=CQ.
(1)求證:△ABP≌△ACQ;
(2)請判斷△APQ是什么三角形,試說明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在數(shù)學(xué)活動課中,小敏為了測量校園內(nèi)旗桿CD的高度,先在教學(xué)樓的底端A點處,觀測到旗桿頂端C的仰角∠CAD=60°,然后爬到教學(xué)樓上的B處,觀測到旗桿底端D的俯角是30°,已知教學(xué)樓AB高4米.
(1)求教學(xué)樓與旗桿的水平距離AD;(結(jié)果保留根號)
(2)求旗桿CD的高度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為半圓O的直徑,C為BA延長線上一點,CD切半圓O于點D。連結(jié)OD,作BE⊥CD于點E,交半圓O于點F。已知CE=12,BE=9,
(1)求證:△COD∽△CBE;
(2)求半圓O的半徑的長
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖為二次函數(shù)y=ax2+bx+c的圖象,在下列說法中:
①ac<0;
②方程ax2+bx+c=0的根是x1=﹣1,x2=3;
③a+b+c>0;
④當(dāng)x>1時,y隨著x的增大而增大.
正確的說法有________.(請寫出所有正確的序號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的弦,OP⊥OA交AB于點P,過點B的直線交OP的延長線于點C,且CP=CB.
(1)求證:BC是⊙O的切線;
(2)若⊙O的半徑為,OP=1,求BC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,BD是△ABC的角平分線,點E、F分別在邊BC、AB上,且DE∥AB,∠DEF=∠A.
(1)求證:BE=AF;
(2)設(shè)BD與EF交于點M,聯(lián)結(jié)AE交BD于點N,求證:BNMD=BDND.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某工廠計劃生產(chǎn)A、B兩種產(chǎn)品共50件,需購買甲、乙兩種材料.生產(chǎn)一件A產(chǎn)品需甲種材料30千克、乙種材料10千克;生產(chǎn)一件B產(chǎn)品需甲、乙兩種材料各20千克.經(jīng)測算,購買甲、乙兩種材料各1千克共需資金40元,購買甲種材料2千克和乙種材料3千克共需資金105元.
(1)甲、乙兩種材料每千克分別是多少元?
(2)現(xiàn)工廠用于購買甲、乙兩種材料的資金不超過38000元,且生產(chǎn)B產(chǎn)品不少于28件,問符合條件的生產(chǎn)方案有哪幾種?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com