(2008•常德)如圖,在直線l上擺放有△ABC和直角梯形DEFG,且CD=6cm;在△ABC中:∠C=90°,∠A=30°,AB=4cm;在直角梯形DEFG中:EF∥DG,∠DGF=90°,DG=6cm,DE=4cm,∠EDG=60度.解答下列問題:

(1)旋轉(zhuǎn):將△ABC繞點(diǎn)C順時(shí)針方向旋轉(zhuǎn)90°,請你在圖中作出旋轉(zhuǎn)后的對應(yīng)圖形△A1B1C,并求出AB1的長度;
(2)翻折:將△A1B1C沿過點(diǎn)B1且與直線l垂直的直線翻折,得到翻折后的對應(yīng)圖形△A2B1C1,試判定四邊形A2B1DE的形狀并說明理由;
(3)平移:將△A2B1C1沿直線l向右平移至△A3B2C2,若設(shè)平移的距離為x,△A3B2C2與直角梯形重疊部分的面積為y,當(dāng)y等于△ABC面積的一半時(shí),x的值是多少.
【答案】分析:(1)根據(jù)旋轉(zhuǎn)的定義得到CB′=CB,在直角三角形ABC中,根據(jù)三角函數(shù)就可以求出BC的長,即CB′的長,就可以求出AB1的長度;
(2)四邊形A2B1DE是菱形,可以證明A2B與DE平行且相等,得到四邊形A2B1DE是平行四邊形,又A2B1=B1D=4,所以平行四邊形A2B1DE是菱形.
(3)y等于△ABC面積的一半時(shí)有兩種情況,一種是當(dāng)A3B2與DE相交時(shí),即當(dāng)2≤x<4時(shí):根據(jù)A3B2∥DE,得到則重合部分的三角形與△A3B2C2相似,且面積的比等于相似比,就可以求出在直線L上重合部分的長度,得到C1C2的長度.從而求出x的值.
另外一種情況是當(dāng)A3B2與FG相交時(shí),同樣,根據(jù)三角形相似就可以求出C1C2的長度.從而求出x的值.
解答:解:(1)在△ABC中,由已知得:BC=2cm,AC=AB×cos30°=cm,
∴AB1=AC+CB1=AC+CB=cm.

(2)四邊形A2B1DE菱形.
理由如下:∵∠C=90°,∠A=30°,AB=4cm,
∴BC=AB=×4=2cm,
∵∠EDG=60°,∠A2B1C1=∠A1B1C=∠ABC=60°,
∴A2B1∥DE,
又∵A2B1=A1B1=AB=4cm,DE=4cm,
∴A2B1=DE,
∴四邊形A2B1DE是平行四邊形,
又∵A2B1=AB=4cm,
B1D=CD-B1C=6-2=4cm,
∴A2B1=B1D=4cm,
∴平行四邊形A2B1DE是菱形.

(3)由題意可知:
S△ABC=cm2,
①當(dāng)0≤x<2或x≥10時(shí),y=0,
此時(shí)重疊部分的面積不會等于△ABC的面積的一半.
②當(dāng)2≤x<4時(shí),直角邊B2C2與直角梯形的下底邊DG重疊的長度為DC2=C1C2-DC1=(x-2)cm,
則y=(x-2)(x-2)=(x-2)2,
當(dāng)y=S△ABC=時(shí),即(x-2)2=
解得(舍)或x=2+
∴當(dāng)x=2+cm時(shí),重疊部分的面積等于△ABC的面積的一半.
③當(dāng)4cm≤x<8cm時(shí),△A3B2C2完全與直角梯形重疊,即y=2cm2
④當(dāng)8cm≤x<10cm時(shí),B2G=B2C2-GC2=2-(x-8)=10-xcm
則y=(10-x)•(10-x)=(10-x)2,
當(dāng)y=S△ABC=時(shí),即(10-x)2=,
解得x=10-cm,或x=10+cm(舍去).
∴當(dāng)x=10-cm時(shí),重疊部分的面積等于△ABC的面積的一半.
由以上討論知,當(dāng)x=2+cm或x=10-cm時(shí),重疊部分的面積等于△ABC的面積的一半.
點(diǎn)評:本題主要考查了旋轉(zhuǎn)的性質(zhì),用運(yùn)動變化的觀點(diǎn)理解本題是解決的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2008年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(09)(解析版) 題型:解答題

(2008•常德)如圖,已知四邊形ABCD是矩形,且MO=MD=4,MC=3.
(1)求直線BM的解析式;
(2)求過A、M、B三點(diǎn)的拋物線的解析式;
(3)在(2)中的拋物線上是否存在點(diǎn)P,使△PMB構(gòu)成以BM為直角邊的直角三角形?若沒有,請說明理由;若有,則求出一個(gè)符合條件的P點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年廣東省湛江市初中畢業(yè)生學(xué)業(yè)考試6月仿真數(shù)學(xué)試卷(解析版) 題型:解答題

(2008•常德)如圖,已知四邊形ABCD是矩形,且MO=MD=4,MC=3.
(1)求直線BM的解析式;
(2)求過A、M、B三點(diǎn)的拋物線的解析式;
(3)在(2)中的拋物線上是否存在點(diǎn)P,使△PMB構(gòu)成以BM為直角邊的直角三角形?若沒有,請說明理由;若有,則求出一個(gè)符合條件的P點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2008年湖南省常德市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2008•常德)如圖,已知四邊形ABCD是矩形,且MO=MD=4,MC=3.
(1)求直線BM的解析式;
(2)求過A、M、B三點(diǎn)的拋物線的解析式;
(3)在(2)中的拋物線上是否存在點(diǎn)P,使△PMB構(gòu)成以BM為直角邊的直角三角形?若沒有,請說明理由;若有,則求出一個(gè)符合條件的P點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2008年全國中考數(shù)學(xué)試題匯編《圓》(12)(解析版) 題型:解答題

(2008•常德)如圖,已知⊙O是△ABC的外接圓,AB為直徑,若PA⊥AB,PO過弧AC的中點(diǎn)M,求證:PC是⊙O的切線.

查看答案和解析>>

同步練習(xí)冊答案