【題目】要反映我市某一周每天的最高氣溫的變化趨勢,宜采用(
A.扇形統(tǒng)計圖
B.條形統(tǒng)計圖
C.折線統(tǒng)計圖
D.頻數(shù)分布統(tǒng)計圖

【答案】C
【解析】根據(jù)題意,要求直觀反映我市一周內(nèi)每天的最高氣溫的變化情況,結(jié)合統(tǒng)計圖各自的特點(diǎn),應(yīng)選擇折線統(tǒng)計圖.故選:C.
根據(jù)統(tǒng)計圖的特點(diǎn)進(jìn)行扇形統(tǒng)計圖表示的是部分在總體中所占的百分比,但一般不能直接從圖中得到具體的數(shù)據(jù);折線統(tǒng)計圖表示的是事物的變化情況;條形統(tǒng)計圖能清楚地表示出每個項(xiàng)目的具體數(shù)目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某烤鴨店在確定烤鴨的烤制時間時,主要依據(jù)的是下表的數(shù)據(jù):

鴨的質(zhì)量/千克

0.5

1

1.5

2

2.5

3

3.5

4

烤制時間/

40

60

80

100

120

140

160

180

設(shè)鴨的質(zhì)量為x千克,烤制時間為t,估計當(dāng)x=3.2千克時,t的值為(  )

A140 B138 C148 D160

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一個多項(xiàng)式與3x2+9x+2的和等于3x2+4x-3,則此多項(xiàng)式是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,a、b、c在數(shù)軸上的位置如圖.

(1)填空:a、b之間的距離為;b、c之間的距離為;a、c之間的距離為
(2)化簡:|a+1|﹣|c﹣b|+|b﹣1|.
(3)若a+b+c=0,且b與﹣1的距離和c與﹣1的距離相等,求﹣a2+2b﹣c﹣(a﹣4c﹣b)的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖1,菱形ABCD的邊長為6∠DAB=60°,點(diǎn)EAB的中點(diǎn),連接ACEC.點(diǎn)Q從點(diǎn)A出發(fā),沿折線A﹣D﹣C運(yùn)動,同時點(diǎn)P從點(diǎn)A出發(fā),沿射線AB運(yùn)動,PQ的速度均為每秒1個單位長度;以PQ為邊在PQ的左側(cè)作等邊△PQF,△PQF△AEC重疊部分的面積為S,當(dāng)點(diǎn)Q運(yùn)動到點(diǎn)CP、Q同時停止運(yùn)動,設(shè)運(yùn)動的時間為t

1)當(dāng)?shù)冗?/span>△PQF的邊PQ恰好經(jīng)過點(diǎn)D時,求運(yùn)動時間t的值;當(dāng)?shù)冗?/span>△PQF的邊QF 恰好經(jīng)過點(diǎn)E時,求運(yùn)動時間t的值;

2)在整個運(yùn)動過程中,請求出St之間的函數(shù)關(guān)系式和相應(yīng)的自變量t的取值范圍;

3)如圖2,當(dāng)點(diǎn)Q到達(dá)C點(diǎn)時,將等邊△PQF繞點(diǎn)P旋轉(zhuǎn)α°0α360),直線PF分別與直線AC、直線CD交于點(diǎn)M、N.是否存在這樣的α,使△CMN為等腰三角形?若存在,請直接寫出此時線段CM的長度;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程x2+3x+1﹣m=0有兩個不相等的實(shí)數(shù)根.

1)求m的取值范圍;

2)若m為負(fù)整數(shù),求此時方程的根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有理數(shù)a、b、c的大小關(guān)系為:c<b<0<a,則下面的判斷正確的是(
A.abc<0
B.a﹣b>0
C.
D.c﹣a>0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列各對數(shù)中,相等的是( 。

A. ﹣32和﹣23 B. (﹣3)2和(﹣2)3

C. ﹣32和(﹣3)2 D. ﹣23和(﹣2)3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,ACB=90°,BC=6,AB=10.點(diǎn)Q與點(diǎn)B在AC的同側(cè),且AQAC.

(1)如圖1,點(diǎn)Q不與點(diǎn)A重合,連結(jié)CQ交AB于點(diǎn)P.設(shè)AQ=x,AP=y,求y關(guān)于x的函數(shù)解析式,并寫出自變量x的取值范圍;

(2)是否存在點(diǎn)Q,使PAQ與ABC相似,若存在,求AQ的長;若不存在,請說明理由;

(3)如圖2,過點(diǎn)B作BDAQ,垂足為D.將以點(diǎn)Q為圓心,QD為半徑的圓記為Q.若點(diǎn)C到Q上點(diǎn)的距離的最小值為8,求Q的半徑.

查看答案和解析>>

同步練習(xí)冊答案