(2013年四川南充8分)如圖,二次函數(shù)y=x2+bx-3b+3的圖象與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),交y軸于點(diǎn)C,且經(jīng)過點(diǎn)(b-2,2b2-5b-1).
(1)求這條拋物線的解析式;
(2)⊙M過A、B、C三點(diǎn),交y軸于另一點(diǎn)D,求點(diǎn)M的坐標(biāo);
(3)連接AM、DM,將∠AMD繞點(diǎn)M順時(shí)針旋轉(zhuǎn),兩邊MA、MD與x軸、y軸分別交于點(diǎn)E、F,若△DMF為等腰三角形,求點(diǎn)E的坐標(biāo).
解:(1)把點(diǎn)(b-2,2b2-5b-1)代入y=x2+bx-3b+3,得
2b2-5b-1=(b-2)2+b(b-2)-3b+3, 解得b=2。
∴拋物線的解析式為y=x2+2x-3。
(2)由x2+2x-3=0,得x=-3或x=1。∴A(-3,0)、B(1,0)。
由x=0得y=-3,∴(0,-3)。
∵拋物線的對(duì)稱軸是直線x=-1,圓心M在直線x=-1上,
∴設(shè)M(-1,n),作MG⊥x軸于G,MH⊥y軸于H,連接MC、MB。
∴MH=1,BG=2。
∵M(jìn)B=MC,∴BG2+MG2=MH2+CH2,
即4+n2=1+(3+n)2,解得n=-1!帱c(diǎn)M(-1,-1)。
(3)如圖,由M(-1,-1),得MG=MH。
∵M(jìn)A=MD,∴Rt△AMG≌RtDMH!唷1=∠2。
由旋轉(zhuǎn)可知∠3=∠4, ∴△AME≌△DMF。
若△DMF為等腰三角形,則△AME為等腰三角形。
設(shè)E(x,0),△AME為等腰三角形,分三種情況:
①AE=AM=,則x=-3,∴E(-3,0)。
②∵M(jìn)在AB的垂直平分線上,∴MA=ME=MB,∴E(1,0)。
③點(diǎn)E在AM的垂直平分線上,則AE=ME,
AE=x+3,ME2=MG2+EG2=1+(-1-x)2,
∴(x+3)2=1+(-1-x)2,解得x=,∴E(,0)。
∴所求點(diǎn)E的坐標(biāo)為(-3,0),(1,0),(,0)。
解析
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,已知直線與拋物線相交于A,B兩點(diǎn),且點(diǎn)A(1,-4)為拋物線的頂點(diǎn),點(diǎn)B在x軸上。
(1)求拋物線的解析式;
(2)在(1)中拋物線的第二象限圖象上是否存在一點(diǎn)P,使△POB與△POC全等?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由;
(3)若點(diǎn)Q是y軸上一點(diǎn),且△ABQ為直角三角形,求點(diǎn)Q的坐標(biāo)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,拋物線y=ax2+bx+c(a≠0)的圖象過點(diǎn)C(0,1),頂點(diǎn)為Q(2,3),點(diǎn)D在x軸正半軸上,且OD=OC.
(1)求直線CD的解析式;
(2)求拋物線的解析式;
(3)將直線CD繞點(diǎn)C逆時(shí)針方向旋轉(zhuǎn)45°所得直線與拋物線相交于另一點(diǎn)E,求證:△CEQ∽△CDO;
(4)在(3)的條件下,若點(diǎn)P是線段QE上的動(dòng)點(diǎn),點(diǎn)F是線段OD上的動(dòng)點(diǎn),問:在P點(diǎn)和F點(diǎn)移動(dòng)過程中,△PCF的周長(zhǎng)是否存在最小值?若存在,求出這個(gè)最小值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
已知拋物線y1=ax2+bx+c(a≠0)的頂點(diǎn)坐標(biāo)是(1,4),它與直線y2=x+1的一個(gè)交點(diǎn)的橫坐標(biāo)為2.
(1)求拋物線的解析式;
(2)在給出的坐標(biāo)系中畫出拋物線y1=ax2+bx+c(a≠0)及直線y2=x+1的圖象,并根據(jù)圖象,直接寫出使得y1≥y2的x的取值范圍;
(3)設(shè)拋物線與x軸的右邊交點(diǎn)為A,過點(diǎn)A作x軸的垂線,交直線y2=x+1于點(diǎn)B,點(diǎn)P在拋物線上,當(dāng)S△PAB≤6時(shí),求點(diǎn)P的橫坐標(biāo)x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系中,已知M1(3,2),N1(5,﹣1),線段M1N1平移至線段MN處(注:M1與M,N1與N分別為對(duì)應(yīng)點(diǎn)).
(1)若M(﹣2,5),請(qǐng)直接寫出N點(diǎn)坐標(biāo).
(2)在(1)問的條件下,點(diǎn)N在拋物線上,求該拋物線對(duì)應(yīng)的函數(shù)解析式.
(3)在(2)問條件下,若拋物線頂點(diǎn)為B,與y軸交于點(diǎn)A,點(diǎn)E為線段AB中點(diǎn),點(diǎn)C(0,m)是y軸負(fù)半軸上一動(dòng)點(diǎn),線段EC與線段BO相交于F,且OC:OF=2:,求m的值.
(4)在(3)問條件下,動(dòng)點(diǎn)P從B點(diǎn)出發(fā),沿x軸正方向勻速運(yùn)動(dòng),點(diǎn)P運(yùn)動(dòng)到什么位置時(shí)(即BP長(zhǎng)為多少),將△ABP沿邊PE折疊,△APE與△PBE重疊部分的面積恰好為此時(shí)的△ABP面積的,求此時(shí)BP的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
(2013年浙江義烏10分)小明合作學(xué)習(xí)小組在探究旋轉(zhuǎn)、平移變換.如圖△ABC,△DEF均為等腰直角三角形,各頂點(diǎn)坐標(biāo)分別為A(1,1),B(2,2),C(2,1),D(,0),E(, 0),F(xiàn)(,).
(1)他們將△ABC繞C點(diǎn)按順時(shí)針方向旋轉(zhuǎn)450得到△A1B1C.請(qǐng)你寫出點(diǎn)A1,B1的坐標(biāo),并判斷A1C和DF的位置關(guān)系;
(2)他們將△ABC繞原點(diǎn)按順時(shí)針方向旋轉(zhuǎn)450,發(fā)現(xiàn)旋轉(zhuǎn)后的三角形恰好有兩個(gè)頂點(diǎn)落在拋物線上.請(qǐng)你求出符合條件的拋物線解析式;
(3)他們繼續(xù)探究,發(fā)現(xiàn)將△ABC繞某個(gè)點(diǎn)旋轉(zhuǎn)45,若旋轉(zhuǎn)后的三角形恰好有兩個(gè)頂點(diǎn)落在拋物線上,則可求出旋轉(zhuǎn)后三角形的直角頂點(diǎn)P的坐標(biāo).請(qǐng)你直接寫出點(diǎn)P的所有坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
將矩形OABC置于平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(0,4),點(diǎn)C的坐標(biāo)為(m,0)(m>0),點(diǎn)D(m,1)在BC上,將矩形OABC沿AD折疊壓平,使點(diǎn)B落在坐標(biāo)平面內(nèi),設(shè)點(diǎn)B的對(duì)應(yīng)點(diǎn)為點(diǎn)E.
(1)當(dāng)m=3時(shí),點(diǎn)B的坐標(biāo)為 ,點(diǎn)E的坐標(biāo)為 ;
(2)隨著m的變化,試探索:點(diǎn)E能否恰好落在x軸上?若能,請(qǐng)求出m的值;若不能,請(qǐng)說明理由.
(3)如圖,若點(diǎn)E的縱坐標(biāo)為-1,拋物線(a≠0且a為常數(shù))的頂點(diǎn)落在△ADE的內(nèi)部,求a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖①,在?ABCD中,AB=13,BC=50,BC邊上的高為12.點(diǎn)P從點(diǎn)B出發(fā),沿B﹣A﹣D﹣A運(yùn)動(dòng),沿B﹣A運(yùn)動(dòng)時(shí)的速度為每秒13個(gè)單位長(zhǎng)度,沿A﹣D﹣A運(yùn)動(dòng)時(shí)的速度為每秒8個(gè)單位長(zhǎng)度.點(diǎn)Q從點(diǎn) B出發(fā)沿BC方向運(yùn)動(dòng),速度為每秒5個(gè)單位長(zhǎng)度.P、Q兩點(diǎn)同時(shí)出發(fā),當(dāng)點(diǎn)Q到達(dá)點(diǎn)C時(shí),P、Q兩點(diǎn)同時(shí)停止運(yùn)動(dòng).設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t(秒).連結(jié)PQ.
(1)當(dāng)點(diǎn)P沿A﹣D﹣A運(yùn)動(dòng)時(shí),求AP的長(zhǎng)(用含t的代數(shù)式表示).
(2)連結(jié)AQ,在點(diǎn)P沿B﹣A﹣D運(yùn)動(dòng)過程中,當(dāng)點(diǎn)P與點(diǎn)B、點(diǎn)A不重合時(shí),記△APQ的面積為S.求S與t之間的函數(shù)關(guān)系式.
(3)過點(diǎn)Q作QR∥AB,交AD于點(diǎn)R,連結(jié)BR,如圖②.在點(diǎn)P沿B﹣A﹣D運(yùn)動(dòng)過程中,當(dāng)線段PQ掃過的圖形(陰影部分)被線段BR分成面積相等的兩部分時(shí)t的值.
(4)設(shè)點(diǎn)C、D關(guān)于直線PQ的對(duì)稱點(diǎn)分別為C′、D′,直接寫出C′D′∥BC時(shí)t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
已知拋物線的頂點(diǎn)A(2,0),與y軸的交點(diǎn)為B(0,-1).
(1)求拋物線的解析式;
(2)在對(duì)稱軸右側(cè)的拋物線上找出一點(diǎn)C,使以BC為直徑的圓經(jīng)過拋物線的頂點(diǎn)A.并求出點(diǎn)C的坐標(biāo)以及此時(shí)圓的圓心P點(diǎn)的坐標(biāo).
(3)在(2)的基礎(chǔ)上,設(shè)直線x=t(0<t<10)與拋物線交于點(diǎn)N,當(dāng)t為何值時(shí),△BCN的面積最大,并求出最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com