【題目】已知長方形ABCD中AB=8cm,BC=10cm,在邊CD上取一點E,將ADE折疊使點D恰好落在BC邊上的點F,求CE的長.

【答案】3cm.

【解析】

試題分析:要求CE的長,應(yīng)先設(shè)CE的長為x,由將ADE折疊使點D恰好落在BC邊上的點F可得RtADERtAFE,所以AF=10cm,EF=DE=8-x;在RtABF中由勾股定理得:AB2+BF2=AF2,已知AB、AF的長可求出BF的長,又CF=BC-BF=10-BF,在RtECF中由勾股定理可得:EF2=CE2+CF2,即:(8-x)2=x2+(10-BF)2,將求出的BF的值代入該方程求出x的值,即求出了CE的長.

試題解析:四邊形ABCD是矩形,

AD=BC=10cm,CD=AB=8cm,

根據(jù)題意得:RtADERtAFE,

∴∠AFE=90°,AF=10cm,EF=DE,

設(shè)CE=xcm,則DE=EF=CD-CE=8-x,

在RtABF中由勾股定理得:AB2+BF2=AF2,

即82+BF2=102,

BF=6cm,

CF=BC-BF=10-6=4(cm),

在RtECF中由勾股定理可得:EF2=CE2+CF2,

即(8-x)2=x2+42

64-16x+x2=x2+16,

x=3(cm),

即CE=3cm.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) 是關(guān)于x的二次函數(shù),求:
(1)滿足條件的k的值;
(2)當(dāng)k為何值時,拋物線有最高點?求出這個最高點;
(3)當(dāng)k為何值時,函數(shù)有最小值?最小值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一艘載重480 t的船,容積是1 050 m3,現(xiàn)有甲種貨物450 m3,乙種貨物350 t,而甲種貨物每噸的體積為2.5 m3,乙種貨物每立方米0.5 t.問:(1)甲、乙兩種貨物是否都能裝上船?如果不能,請說明理由.

(2)為了最大限度地利用船的載質(zhì)量和容積,兩種貨物應(yīng)各裝多少噸?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,所有正方形的中心均在坐標(biāo)原點,且各邊與x軸或y軸平行,從內(nèi)到外,它們的邊長依次為2,4,6,8 …,頂點依次為A1,A2,A3,A4,A5,…,則頂點A55的坐標(biāo)是( )

A. (13,13) B. (-13,-13) C. (-14,-14) D. (14,14)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtABO的頂點A是雙曲線y與直線y=-x(k+1)在第二象限的交點.ABx軸于B,且SABO

(1)求這兩個函數(shù)的解析式;

(2)求直線與雙曲線的兩個交點AC的坐標(biāo)和AOC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】講完有理數(shù)的除法后,老師在課堂上出了一道計算題:15÷(-8).不一會兒,不少同學(xué)算出了答案,老師把班上同學(xué)的解題過程歸類寫到黑板上.

方法一:原式=×(-)=-=-1;

方法二:原式=(15+)×(-)=15×(-)+×(-)=-=-1;

方法三:原式=(16-)÷(-8)=16÷(-8)-÷(-8)=-2+=-1.

對這三種方法,大家議論紛紛,你認(rèn)為哪種方法最好?請說出理由,并說說本題對你有何啟發(fā).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,邊長為2的正方形ABCD中,P是CD的中點,連接AP并延長,交BC的延長線于點F,作△CPF的外接圓⊙O,連接BP并延長交⊙O于點E,連接EF,則EF的長為(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】今年5月,從全國旅游景區(qū)質(zhì)量等級評審會上傳來喜訊,我市“風(fēng)岡茶海之心”、“赤水佛光巖”、“仁懷中國酒文化城”三個景區(qū)加入國家“4A”級景區(qū).至此,全市“4A”級景區(qū)已達(dá)13個.某旅游公司為了了解我市“4A”級景區(qū)的知名度情況,特對部分市民進(jìn)行現(xiàn)場采訪,根據(jù)市民對13個景區(qū)名字的回答情況,按答數(shù)多少分為熟悉(A),基本了解(B)、略有知曉(C)、知之甚少(D)四類進(jìn)行統(tǒng)計,繪制了一下兩幅統(tǒng)計圖(不完整),請根據(jù)圖中信息解答以下各題:
(1)本次調(diào)查活動的樣本容量是
(2)調(diào)查中屬于“基本了解”的市民有人;
(3)補(bǔ)全條形統(tǒng)計圖;
(4)“略有知曉”類占扇形統(tǒng)計圖的圓心角是多少度?“知之甚少”類市民占被調(diào)查人數(shù)的百分比是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,圖1、圖2、圖3分別表示甲、乙、丙三人由A地到B地的路線圖(箭頭表示行進(jìn)的方向).其中E為AB的中點,AH>HB,判斷三人行進(jìn)路線長度的大小關(guān)系為(

A.甲<乙<丙 B.乙<丙<甲

C.丙<乙<甲 D.甲=乙=丙

查看答案和解析>>

同步練習(xí)冊答案