如圖,在△ABC中,AB=2,AC=1,以AB為直徑的圓與AC相切,與邊BC交于點D,則AD的長為( )

A.
B.
C.
D.
【答案】分析:根據(jù)以AB為直徑的圓與AC相切,可知∠CAB=∠ADB=90°,即可利用勾股定理求得BC=,再利用三角形的面積求得AD==
解答:解:∵AB為直徑的圓與AC相切,
∴∠CAB=∠ADB=90°,
∵AB=2,AC=1,
∴BC=,
∵AD•BC=AC•AB,
∴AD==
故選A.
點評:本題利用了直徑所對圓周角是直角,切線的概念,直角三角形的面積公式求解.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

20、如圖,在△ABC中,∠BAC=45°,現(xiàn)將△ABC繞點A逆時針旋轉(zhuǎn)30°至△ADE的位置,使AC⊥DE,則∠B=
75
度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,∠ACB=90°,AC=BC=1,取斜邊的中點,向斜邊作垂線,畫出一個新的等腰三角形,如此繼續(xù)下去,直到所畫出的直角三角形的斜邊與△ABC的BC重疊,這時這個三角形的斜邊為
( 。
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

2、如圖,在△ABC中,DE∥BC,那么圖中與∠1相等的角是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

14、如圖,在△ABC中,AB=BC,邊BC的垂直平分線分別交AB、BC于點E、D,若BC=10,AC=6cm,則△ACE的周長是
16
cm.

查看答案和解析>>

同步練習冊答案