分析 (1)根據(jù)相似三角形的判定與性質(zhì),可得,根據(jù)比例的性質(zhì),可得答案;
(2)根據(jù)直角三角形的性質(zhì),可得CE與AE的關(guān)系,根據(jù)等腰三角形的性質(zhì),可得∠EAC=∠ECA,根據(jù)角平分線的定義,可得∠CAD=∠CAB,根據(jù)平行線的判定,可得答案;
(3)由(2)知CE∥AD,進(jìn)而得到△AFD∽△CFE,AD:CE=AF:CF;求得CE=3,AD=4,即可解決問題.
解答 證明:(1)∵AC平分∠BAD,
∴∠DAC=∠CAB.
∵∠ADC=∠ACB=90°,
∴△ADC∽△ACB;
(2)∵E是AB的中點(diǎn),
∴CE=$\frac{1}{2}$AB=AE,
∴∠EAC=∠ECA.
∵AC平分∠DAB,
∴∠CAD=∠CAB,
∴∠CAD=∠ECA,
∴CE∥AD;
(3)解:由(2)知CE∥AD;
∴△AFD∽△CFE,
∴$\frac{AF}{CF}=\frac{AD}{CE}$AD:CE=AF:CF;
∵CE=$\frac{1}{2}$AB=3,AD=4,
$\frac{AF}{CF}=\frac{AD}{CE}=\frac{4}{3}$,
∴$\frac{AF}{AC}=\frac{4}{7}$.
點(diǎn)評(píng) 本題考查了相似三角形的判定與性質(zhì),(1)利用了相似三角形的判定與性質(zhì),比例的性質(zhì);(2)利用了直角三角形的性質(zhì),等腰三角形的性質(zhì),平行線的判定,牢固掌握直角三角形的性質(zhì)、相似三角形的判定及其性質(zhì)是解題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 非負(fù)數(shù) | B. | 正數(shù) | C. | 負(fù)數(shù) | D. | 非正數(shù) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 1.39×105 | B. | 1.39×106 | C. | 13.9×105 | D. | 13.9×106 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com