【題目】在Rt△ABC中,∠B=900,AC=100cm, ∠A=600,點D從點C出發(fā)沿CA方向以4cm/s的速度向點A勻速運(yùn)動,同時點E從點A出發(fā)沿AB方向以2cm/s的速度向點B勻速運(yùn)動,當(dāng)其中一個點到達(dá)終點時,另一個點也隨之停止運(yùn)動,設(shè)點D、E運(yùn)動的時間是t秒(0<t≤25)過點D作DF⊥BC于點F,連結(jié)DE、EF。
(1)四邊形AEFD能夠成為菱形嗎?若能,求相應(yīng)的t值,若不能,請說明理由。
(2)當(dāng)t為何值時,△DEF為直角三角形?請說明理由。
【答案】(1)能,10;(2) 或12,理由見解析.
【解析】
(1)首先根據(jù)題意計算AB的長,再證明四邊形AEFD是平行四邊形,要成菱形則AD=AE,因此可得t的值.
(2)要使△DEF為直角三角形,則有兩種情況:①∠EDF=90°;②∠DEF=90°,分別計算即可.
解:(1)能,
∵在Rt△ABC中,∠C=90°﹣∠A=30°,
∴AB=AC=×60=30cm。
∵CD=4t,AE=2t,
又∵在Rt△CDF中,∠C=30°,∴DF=CD=2t!DF=AE。
∵DF∥AB,DF=AE,∴四邊形AEFD是平行四邊形。
當(dāng)AD=AE時,四邊形AEFD是菱形,即60﹣4t=2t,解得:t=10。
∴當(dāng)t=10時,AEFD是菱形。
(2)若△DEF為直角三角形,有兩種情況:
①如圖1,∠EDF=90°,DE∥BC,
則AD=2AE,即60﹣4t=2×2t,解得:t= 。
②如圖2,∠DEF=90°,DE⊥AC,
則AE=2AD,即
2t =2×60-8t,解得:t=12。
綜上所述,當(dāng)t= 或12時,△DEF為直角三角形
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個小吃店去超市買10袋面粉,這10袋面粉的重量分別為:24.8千克、25.1千克、24.3千克、24.6千克、25.5千克、25.3千克、24.9千克、25.0千克、24.7千克、25.1千克,你能很快就求出這10袋面粉的總重量嗎?(動動腦筋可能找到簡單的方法喲)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某一公路的道路維修工程,準(zhǔn)備從甲、乙兩個工程隊選一個隊單獨完成,根據(jù)兩隊每天的工程費(fèi)用和每天完成的工程量可知,若由兩隊合做6天可以完成,共需工程費(fèi)用385200元;若單獨完成,甲隊比乙隊少用5天,每天的工程費(fèi)用甲隊比乙隊多4000元。
(1)求甲、乙獨做各需多少天?
(2)若從節(jié)省資金的角度,應(yīng)該選擇哪個工程隊?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知如圖,△ABC中AB=AC,AE是角平分線,BM平分∠ABC交AE于點M,經(jīng)過B、M兩點的⊙O交BC于G,交AB于點F,F(xiàn)B恰為⊙O的直徑.
(1)求證:AE與⊙O相切;
(2)當(dāng)BC=6,cosC=,求⊙O的直徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰直角△ACB中,∠ACB=90°,O是斜邊AB的中點,點D、E分別在直角邊AC、BC上,且∠DOE=90°,DE交OC于點P.則下列結(jié)論:
(1)圖形中全等的三角形只有兩對;
(2)△ABC的面積等于四邊形CDOE的面積的2倍;
(3)CD+CE=OA;
(4)AD2+BE2=2OPOC.其中正確的結(jié)論有( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把下列各數(shù)填入相應(yīng)的橫線上:
-2,2π,,0,-3.7,,0.35,
整數(shù):______________________; 正有理數(shù):__________________;
無理數(shù):____________________; 負(fù)分?jǐn)?shù):_____________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,AB=6,∠DAB=60°,AE分別交BC、BD于點E、F,CE=2,連接CF,以下結(jié)論:①△ABF≌△CBF;②點E到AB的距高是;③AF=CF;④△ABF的面積為其中一定成立的有( )個.
A. 1B. 2C. 3D. 4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com