如圖所示,連接△ABC的 頂點(diǎn)A和它所對(duì)邊BC的中點(diǎn)M,所得線段AM叫做________________

答案:
解析:

BC邊的中線


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

8、如圖所示,直線AB∥CD∥EF,連接BE,EC,若已知∠ABE=32°,∠DCE=160°,則∠BEC的度數(shù)為
12
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖所示,直線AB與反比例函數(shù)y=
kx
的圖象相交于A,B兩點(diǎn),已知A(1,4).
(1)求反比例函數(shù)的解析式;
(2)直線AB交x軸于點(diǎn)C,連接OA,當(dāng)△AOC的面積為6時(shí),求直線AB的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

22、定義:弦切角:頂點(diǎn)在圓上,一邊與圓相交,另一邊和圓相切的角叫弦切角.
問(wèn)題情景:已知如圖所示,直線AB是⊙O的切線,切點(diǎn)為C,CD為⊙O的一條弦,∠P為弧CD所對(duì)的圓周角.
(1)猜想:弦切角∠DCB與∠P之間的關(guān)系.試用轉(zhuǎn)化的的思想:即連接CO并延長(zhǎng)交⊙O于點(diǎn)E,連接DE,來(lái)論證你的猜想.
(2)用自己的語(yǔ)言敘述你猜想得到的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

24、如圖所示,直線AB∥CD∥EF,連接BE,EC,若已知∠ABE=32°,∠DCE=160°,則∠BEC的度數(shù)為
12
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知正方形ABCD,點(diǎn)E在邊AB上,以CE為邊作正方形CEFG,如圖所示,連接DG.求證:△BCE≌△DCG.甲、乙兩位同學(xué)的證明過(guò)程如下,則下列說(shuō)法正確的是( 。
甲:∵四邊形ABCD、四邊形CEFG都是正方形
∴CB=CD   CE=CG∠BCD=∠ECG=90°
∴∠BCD-∠ECD=∠ECG-∠ECD
∴∠BCE=∠GCD
∴△BCE≌△DCG(SAS)
乙:∵四邊形AB,CD、四邊形CEFG都是正方形
∴CB=CD   CE=CG
且∠B=∠CDG=90°
∴△BCE≌△DCG(HL)

查看答案和解析>>

同步練習(xí)冊(cè)答案