如圖兩個(gè)四邊形是成中心對(duì)稱的,請(qǐng)確定對(duì)稱中心并簡(jiǎn)要說明理由.

答案:略
解析:

線段BF(CGABDH)的中點(diǎn),根據(jù)成中心對(duì)稱圖形的對(duì)應(yīng)點(diǎn)連線必經(jīng)過對(duì)稱中心且被對(duì)稱中心平分.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

27、將圖1,將一張直角三角形紙片ABC折疊,使點(diǎn)A與點(diǎn)C重合,這時(shí)DE為折痕,△CBE為等腰三角形;再繼續(xù)將紙片沿△CBE的對(duì)稱軸EF折疊,這時(shí)得到了兩個(gè)完全重合的矩形(其中一個(gè)是原直角三角形的內(nèi)接矩形,另一個(gè)是拼合成的無縫隙、無重疊的矩形),我們稱這樣兩個(gè)矩形為“疊加矩形”.

(1)如圖2,正方形網(wǎng)格中的△ABC能折疊成“疊加矩形”嗎?如果能,請(qǐng)?jiān)趫D2中畫出折痕;
(2)如圖3,在正方形網(wǎng)格中,以給定的BC為一邊,畫出一個(gè)斜三角形ABC,使其頂點(diǎn)A在格點(diǎn)上,且△ABC折成的“疊加矩形”為正方形;
(3)如果一個(gè)三角形所折成的“疊加矩形”為正方形,那么它必須滿足的條件是
三角形一邊長與該邊上的高相等
;
(4)如果一個(gè)四邊形一定能折成“疊加矩形”,那么它必須滿足的條件是
對(duì)角線互相垂直

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

21、已知,如圖,在四邊形ABCD中,AB=BC=CD=DA,∠A=∠C=72°.
請(qǐng)?jiān)O(shè)計(jì)兩種不同的分法,將四邊形ABCD分割成四個(gè)三角形,使得分割成的每個(gè)三角形都是等腰三角形.畫法要求如下:
(1)兩種分法只要有一條分割線段位置不同,就認(rèn)為是兩種不同的分法;
(2)畫圖工具不限,但要求畫出分割線段;
(3)標(biāo)出能夠說明不同分法所得三角形的內(nèi)角度數(shù),例如樣圖;
(4)不要求寫出畫法,不要求證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2011•邯鄲一模)(1)如圖1,四邊形ACDG與四邊形ECBH都是正方形,且B,C,D在一條直線上,連接DE并延長交線段AB于點(diǎn)F.
求證:AB=DE,AB⊥DE;
(2)如果將(1)中的兩個(gè)正方形換成兩個(gè)矩形,如圖2,且
AC
CD
=
BC
CE
=
3
,則AB與DE的數(shù)量關(guān)系與位置關(guān)系會(huì)發(fā)生什么變化?請(qǐng)說明你的看法和理由.
(3)如果將(1)中的兩個(gè)正方形換成兩個(gè)直角三角形,如圖3,∠BCE=∠ACD=90°,且
AC
CD
=
BC
CE
=k,且請(qǐng)直接寫出AB與DE的數(shù)量關(guān)系與位置關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•南湖區(qū)二模)用如圖兩個(gè)完全相同的直角三角板,下列圖形中不能拼成的是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

(2012•大興區(qū)二模)閱讀材料1:
把一個(gè)或幾個(gè)圖形分割后,不重疊、無縫隙的重新拼成另一個(gè)圖形的過程叫做“分割--重拼”.如圖1,一個(gè)梯形可以分割--重拼為一個(gè)三角形;如圖2,任意兩個(gè)正方形可以分割--重拼為一個(gè)正方形.
(1)請(qǐng)你在圖3中畫一條直線將三角形分割成兩部分,將這兩部分重新拼成兩個(gè)不同的四邊形,并將這兩個(gè)四邊形分別畫在圖4,圖5中;
閱讀材料2:
如何把一個(gè)矩形ABCD(如圖6)分割--重拼為一個(gè)正方形呢?操作如下:
①畫輔助圖:作射線OX,在射線OX上截取OM=AB,MN=BC.以O(shè)N為直徑作半圓,過點(diǎn)M作MI⊥OX,與半圓交于點(diǎn)I;
②如圖6,在CD上取點(diǎn)F,使AF=MI,作BE⊥AF,垂足為E.把△ADF沿射線DC平移到△BCH的位置,把△AEB沿射線AF平移到△FGH的位置,得四邊形EBHG.
(2)請(qǐng)依據(jù)上述操作過程證明得到的四邊形EBHG是正方形.

查看答案和解析>>

同步練習(xí)冊(cè)答案