已知,AB是⊙O的直徑,AB=8,點(diǎn)C在⊙O的半徑OA上運(yùn)動(dòng),PC⊥AB,垂足為C,PC=5,PT為⊙O的切線(xiàn),切點(diǎn)為T(mén).
(1)如圖(1),當(dāng)C點(diǎn)運(yùn)動(dòng)到O點(diǎn)時(shí),求PT的長(zhǎng);
(2)如圖(2),當(dāng)C點(diǎn)運(yùn)動(dòng)到A點(diǎn)時(shí),連接PO、BT,求證:POBT;
(3)如圖(3),設(shè)PT2=y,AC=x,求y與x的函數(shù)關(guān)系式及y的最小值.
(1)連接OT
∵PC=5,OT=4,
∴由勾股定理得,PT=
PC2-OT2
=
25-16
=3;

(2)證明:連接OT,∵PT,PC為⊙O的切線(xiàn),
∴OP平分劣弧AT,
∴∠POA=∠POT,
∵∠AOT=2∠B,
∴∠AOP=∠B,
∴POBT;

(3)設(shè)PC交⊙O于點(diǎn)D,延長(zhǎng)線(xiàn)交⊙O于點(diǎn)E,
由相交弦定理,得CD2=AC•BC,
∵AC=x,∴BC=8-x,
∴CD=
x(8-x)
,
∴由切割線(xiàn)定理,得PT2=PD•PE,
∵PT2=y,PC=5,
∴y=[5-
x(8-x)
][5+
x(8-x)
],
∴y=25-x(8-x)=x2-8x+25,
∴y最小=
100-64
4
=9.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在等腰三角形ABC中,AB=AC,O為AB上一點(diǎn),以O(shè)為圓心、OB長(zhǎng)為半徑的圓交BC于D,DE⊥AC交AC于E.
求證:DE是⊙O的切線(xiàn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

下列說(shuō)法正確的是( 。
A.與圓有公共點(diǎn)的直線(xiàn)是圓的切線(xiàn)
B.到圓心距離等于圓的半徑的直線(xiàn)是圓的切線(xiàn)
C.垂直于圓的半徑的直線(xiàn)是圓的切線(xiàn)
D.過(guò)圓的半徑外端的直線(xiàn)是圓的切線(xiàn)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

以點(diǎn)P(1,2)為圓心,r為半徑畫(huà)圓,與坐標(biāo)軸恰好有三個(gè)交點(diǎn),則r=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,AB是⊙O的直徑,AF是⊙O切線(xiàn),CD是垂直于AB的弦,垂足為E,過(guò)點(diǎn)C作DA的平行線(xiàn)與AF相交于點(diǎn)F,CD=4
3
,BE=2.求證:
(1)四邊形FADC是菱形;
(2)FC是⊙O的切線(xiàn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,PA,PB是⊙O的兩條切線(xiàn),A,B分別是切點(diǎn),點(diǎn)C是
AB
上任意一點(diǎn),連接OA,OB,CA,CB,∠P=70°,求∠ACB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

AB是⊙O的直徑,D是⊙O上一動(dòng)點(diǎn),延長(zhǎng)AD到C使CD=AD,連接BC,BD.
(1)證明:當(dāng)D點(diǎn)與A點(diǎn)不重合時(shí),總有AB=BC;
(2)設(shè)⊙O的半徑為2,AD=x,BD=y,用含x的式子表示y;
(3)BC與⊙O是否有可能相切?若不可能相切,則說(shuō)明理由;若能相切,則指出x為何值時(shí)相切.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,Rt△ABC中,∠C=90°,AC=6,BC=8,CD為直徑的⊙O與AB相切于E,則⊙O的半徑是( 。
A.2B.2.5C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,PA、PB是⊙O的兩條切線(xiàn),A、B是切點(diǎn),若∠APB=60°,PO=2,則⊙O的半徑等于______.

查看答案和解析>>

同步練習(xí)冊(cè)答案