如圖 AB⊥CD,垂足為O.

(1)比較∠AOD , ∠EOB, ∠AOE的大小,并用“<”號連接。

(2)若∠EOC=,求∠EOB和∠EOD的度數(shù)。

解:(1)∠AOE<∠AOD<∠EOB                 

 (2) ∵CD⊥AB,∴∠BOC=90°                    

∠EOB=∠EOC+∠COE=90°+28°=118°          

∠EOD=180°-∠COE=180°-28°=152°            

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)在直徑為50cm的圓中,弦AB為40cm,弦CD為48cm,且AB∥CD,求AB與CD之間距離.
解:如圖所示,過O作OM⊥AB,
∵AB∥CD,∴ON⊥CD.
在Rt△BMO中,BO=25cm.
由垂徑定理得BM=
1
2
AB=
1
2
×40=20cm,
∴OM=
OB2-BM2
=
252-202
=15cm.
同理可求ON=
OC2-CN2
=
252-242
=7cm,
所以MN=OM-ON=15-7=8cm.
以上解答有無漏解,漏了什么解,請補上.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

精英家教網(wǎng)閱讀材料:
如圖1,過△ABC的三個頂點分別作出與水平線垂直的三條直線,外側(cè)兩條直線之間的距離叫△ABC的“水平寬”(a),中間的這條直線在△ABC內(nèi)部線段的長度叫△ABC的“鉛垂高(h)”.我們可得出一種計算三角形面積的新方法:S△ABC=
12
ah
,即三角形面積等于水平寬與鉛垂高乘積的一半.
解答下列問題:精英家教網(wǎng)
如圖2,拋物線頂點坐標為點C(-1,-4),交x軸于點A(-3,0),交y軸于點B.
(1)求拋物線和直線AB的解析式;
(2)點P是拋物線(在第三象限內(nèi))上的一個動點,連接PA,PB,當(dāng)P點運動到頂點C時,求△CAB的鉛垂高CD及S△CAB;
(3)是否存在一點P,使S△PAB=S△CAB,若存在,求出P點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,C為以AB為直徑的⊙O上一點,AD和過點C的切線互相垂直,垂足為點D.
(1)求證:AC平分∠BAD;
(2)過點O作線段AC的垂線OE,垂足為點E(尺規(guī)作圖,保留作圖痕跡,不寫作法);
(3)若CD=4,AC=4
5
,求垂線段OE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖.已知△ABC的垂心為H.外接圓⊙O,M為AB的中點.連接MH并延長交⊙O于D.求證:HD⊥CD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年浙教版初中數(shù)學(xué)八年級上1.4平行線之間的距離練習(xí)卷(解析版) 題型:解答題

如圖AB∥CD,AD∥BC。過D作BC的垂線段DE,測量AD與BC之間的距離。

 

查看答案和解析>>

同步練習(xí)冊答案