【題目】已知關于x的一元二次方程(m﹣1)x2+x+1=0有實數(shù)根,則m的取值范圍是(
A.m
B.m>1
C.m<1
D.m 且m≠1

【答案】D
【解析】解:∵一元二次方程(m﹣1)x2+x+1=0有實數(shù)根,
∴△=1﹣4(m﹣1)≥0,且m﹣1≠0,
解得:m≤ 且m≠1.
故選D
【考點精析】根據(jù)題目的已知條件,利用一元二次方程的定義和求根公式的相關知識可以得到問題的答案,需要掌握只有一個未知數(shù),并且未知數(shù)的項的最高系數(shù)為2的方程為一元二次方程;根的判別式△=b2-4ac,這里可以分為3種情況:1、當△>0時,一元二次方程有2個不相等的實數(shù)根2、當△=0時,一元二次方程有2個相同的實數(shù)根3、當△<0時,一元二次方程沒有實數(shù)根.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某拋物線的對稱軸為直線x=2,點E是該拋物線頂點,拋物線與y軸交于點C,過點C作CD∥x軸,與拋物線交于點B,與對稱軸交于點D,點A是對稱軸上一點,連結AC,AB,若△ABC是等邊三角形,則圖中陰影部分圖形的面積之和是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知點C為線段AB上一點,分別以AC、BC為邊在線段AB同側作△ACD△BCE,且CA=CD,CB=CE,∠ACD=∠BCE,直線AEBD交于點F,

(1)如圖1,若∠ACD=60°,則∠AFB=   ;如圖2,若∠ACD=90°,則∠AFB=   ;如圖3,若∠ACD=120°,則∠AFB=   ;

(2)如圖4,若∠ACD=α,則∠AFB=   (用含α的式子表示);

(3)將圖4中的△ACD繞點C順時針旋轉任意角度(交點F至少在BD、AE中的一條線段上),變成如圖5所示的情形,若∠ACD=α,則∠AFBα的有何數(shù)量關系?并給予證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,在△AOB中,∠AOB=90°,OA=3,OB=4.將△AOB沿x軸依次以點A,B,O為旋轉中心順時針旋轉,分別得到圖②、圖③、…,則旋轉得到的圖⑩的直角頂點的坐標為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關于x的分式方程.

(1)若方程的增根為x=2,求a的值;

(2)若方程有增根,求a的值;

(3)若方程無解,求a的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在銳角ABC中,AB=6,BAC=45°,BAC的平分線交BC于點D,M,N分別是ADAB上的動點,則BM+MN的最小值是 ( )

A. B. C. 6 D. 3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=x2+x﹣2與x軸交于A,B兩點,與y軸交于點C.

(1)求點A,點B和點C的坐標;
(2)在拋物線的對稱軸上有一動點P,求PB+PC的值最小時的點P的坐標;
(3)若點M是直線AC下方拋物線上一動點,求四邊形ABCM面積的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】對于下列各組條件,不能判定≌△的一組是

A. A=A′,B=B′,AB=A′B′

B. A=A′,AB=A′B′AC=A′C′

C. A=A′,AB=A′B′,BC=B′C′

D. AB=A′B′,AC=A′C′BC=B′C′

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,拋物線y=mx2﹣8mx+16m﹣1(m>0)與x軸的交點分別為A(x1 , 0),B(x2 , 0).
(1)求證:拋物線總與x軸有兩個不同的交點;
(2)若AB=2,求此拋物線的解析式.
(3)已知x軸上兩點C(2,0),D(5,0),若拋物線y=mx2﹣8mx+16m﹣1(m>0)與線段CD有交點,請寫出m的取值范圍.

查看答案和解析>>

同步練習冊答案