如圖,在10×6的網(wǎng)格圖中(每個(gè)小正方形的邊長(zhǎng)均為1個(gè)單位長(zhǎng)).⊙A半徑為2,⊙B半徑為1,需使⊙A與靜止的⊙B相切,那么⊙A由圖示的位置向左平移    個(gè)單位長(zhǎng).
【答案】分析:在向左平移的過(guò)程中,要考慮兩圓外切和內(nèi)切兩種情況,分別推算平移的單位長(zhǎng)度.
解答:解:∵⊙A與靜止的⊙B相切有兩種情況:內(nèi)切或外切,
當(dāng)外切時(shí)⊙A由圖示的位置向左平移2個(gè)單位長(zhǎng)度,
當(dāng)內(nèi)切時(shí),⊙A由圖示的位置向左平移4個(gè)單位長(zhǎng)度.
故填:2或4.
點(diǎn)評(píng):本題考查了由兩圓位置關(guān)系來(lái)判斷半徑和圓心距之間數(shù)量關(guān)系的方法.兩圓的半徑分別為R和r,且R≥r,圓心距為d:外離d>R+r;外切d=R+r;相交R-r<d<R+r;內(nèi)切d=R-r;內(nèi)含d<R-r.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2013年浙江省湖州市中考數(shù)學(xué)試卷(解析版) 題型:選擇題

如圖,在10×10的網(wǎng)格中,每個(gè)小方格都是邊長(zhǎng)為1的小正方形,每個(gè)小正方形的頂點(diǎn)稱為格點(diǎn).若拋物線經(jīng)過(guò)圖中的三個(gè)格點(diǎn),則以這三個(gè)格點(diǎn)為頂點(diǎn)的三角形稱為拋物線的“內(nèi)接格點(diǎn)三角形”.以O(shè)為坐標(biāo)原點(diǎn)建立如圖所示的平面直角坐標(biāo)系,若拋物線與網(wǎng)格對(duì)角線OB的兩個(gè)交點(diǎn)之間的距離為,且這兩個(gè)交點(diǎn)與拋物線的頂點(diǎn)是拋物線的內(nèi)接格點(diǎn)三角形的三個(gè)頂點(diǎn),則滿足上述條件且對(duì)稱軸平行于y軸的拋物線條數(shù)是( )
A.16
B.15
C.14
D.13

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年遼寧省沈陽(yáng)市和平區(qū)中考數(shù)學(xué)監(jiān)測(cè)卷(二)(解析版) 題型:解答題

如圖,在10×10的正方形網(wǎng)格中△ABC與△DEF的頂點(diǎn),都在邊長(zhǎng)為1 的小正方形頂點(diǎn)上,且點(diǎn)A與原點(diǎn)重合.
(1)畫(huà)出△ABC關(guān)于點(diǎn)B為對(duì)稱中心的中心對(duì)稱圖形△A′BC′,畫(huà)出將△DEF向右平移6個(gè)單位且向上平移2個(gè)單位的△D′E′F′;
(2)求經(jīng)過(guò)A、B、C三點(diǎn)的二次函數(shù)關(guān)系式,并求出頂點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009-2010學(xué)年浙江省臺(tái)州市溫嶺市溫中實(shí)驗(yàn)學(xué)校九年級(jí)(上)第二次段考數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,在10×6的網(wǎng)格圖中(每個(gè)小正方形的邊長(zhǎng)均為1個(gè)單位長(zhǎng)).⊙A半徑為2,⊙B半徑為1,需使⊙A與靜止的⊙B相切,那么⊙A由圖示的位置需向左平移多少個(gè)單位長(zhǎng)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012年湖北省宜昌市中考數(shù)學(xué)試卷(解析版) 題型:選擇題

如圖,在10×6的網(wǎng)格中,每個(gè)小方格的邊長(zhǎng)都是1個(gè)單位,將△ABC平移到△DEF的位置,下面正確的平移步驟是( )

A.先把△ABC向左平移5個(gè)單位,再向下平移2個(gè)單位
B.先把△ABC向右平移5個(gè)單位,再向下平移2個(gè)單位
C.先把△ABC向左平移5個(gè)單位,再向上平移2個(gè)單位
D.先把△ABC向右平移5個(gè)單位,再向上平移2個(gè)單位

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2007年黑龍江省哈爾濱市中考數(shù)學(xué)模擬試卷(一)(解析版) 題型:解答題

如圖,在10×10的正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)均為1個(gè)單位.
(1)作△ABC關(guān)于點(diǎn)P的對(duì)稱圖形△A′B′C′;
(2)再把△A′B′C′,繞著C'逆時(shí)針旋轉(zhuǎn)90°,得到△A″B″C′,請(qǐng)你畫(huà)出△A′B′C′和△A″B″C′.(不要求寫(xiě)畫(huà)法)

查看答案和解析>>

同步練習(xí)冊(cè)答案