正△ABC的邊長(zhǎng)為1,點(diǎn)P在A(yíng)B上,PQ⊥BC,QR⊥AC,RS⊥AB.其中P、Q、R、S為垂足,若SP=,則AP的長(zhǎng)是   
【答案】分析:根據(jù)題意畫(huà)出圖形,如圖1,設(shè)AS=x,由于△ABC是等邊三角形故可得出∠ARS=30°,故AR=2x,RC=1-2x,在Rt△QCR中,QC=2RC=2-4x,故BQ=4x-1,在Rt△BPQ中,BP=2BQ=8x-2,由于A(yíng)B=1,故AS+PS+BP=1,故可得出x的值,進(jìn)而得出結(jié)論;同理,如圖2,當(dāng)點(diǎn)P在x軸的上方時(shí),同上即可得出AP的長(zhǎng).
解答:解:如圖1,
∵△ABC是等邊三角形,
∴∠B=∠A=∠C=60°,
設(shè)AS=x,
在Rt△ASR中,
∵RS⊥AB,
∴∠ASR=90°,
∴∠ARS=30°,
∴AR=2AS=2x,
∴RC=1-AR=1-2x,
在Rt△QCR中,
∵QC=2RC=2-4x,
∴BQ=4x-1,
在Rt△BPQ中,BP=2BQ=8x-2,
∵AB=1,
∴AS+PS+BP=1,即x++8x-2=1,解得x=,
∴AP=AS+PS=+=;
如圖2,當(dāng)點(diǎn)P在點(diǎn)S的上方時(shí),
同上可得,AS+BP-PS=1,即x+8x-2-=1,解得x=,
∴AP=AS-PS=-=
故答案為:
點(diǎn)評(píng):本題考查的是等邊三角形的性質(zhì),含30度角的之間三角形,三角形的內(nèi)角和定理等知識(shí)點(diǎn)的理解和掌握,根據(jù)題意得出BP=2BQ、CQ=2CR、AR=2AS是解此題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

正△ABC的邊長(zhǎng)為1,P在A(yíng)B上,PQ⊥BC,QR⊥AC,RS⊥AB.其中Q、R、S為垂足,若SP=
1
4
,則AP的長(zhǎng)是( 。
A、
2
9
B、
5
9
C、
1
9
D、
5
9
1
9

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,正△ABC的邊長(zhǎng)為a,D為AC邊上的一個(gè)動(dòng)點(diǎn),延長(zhǎng)AB至E,使BE=CD,連接DE,精英家教網(wǎng)交BC于點(diǎn)P.
(1)求證:DP=PE;
(2)若D為AC的中點(diǎn),求BP的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)正△ABC的邊長(zhǎng)為3cm,邊長(zhǎng)為1cm的正△RPQ的頂點(diǎn)R與點(diǎn)A重合,點(diǎn)P,Q分別在A(yíng)C,AB上,將△RPQ沿著邊AB,BC,CA逆時(shí)針連續(xù)翻轉(zhuǎn)(如圖所示),直至點(diǎn)P第一次回到原來(lái)的位置,則點(diǎn)P運(yùn)動(dòng)路徑的長(zhǎng)為
 
cm.(結(jié)果保留π)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•內(nèi)江)如圖,正△ABC的邊長(zhǎng)為3cm,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以每秒1cm的速度,沿A→B→C的方向運(yùn)動(dòng),到達(dá)點(diǎn)C時(shí)停止,設(shè)運(yùn)動(dòng)時(shí)間為x(秒),y=PC2,則y關(guān)于x的函數(shù)的圖象大致為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,△ABC是正三角形,曲線(xiàn)CDEFG…叫做“正三角形的漸開(kāi)線(xiàn)”,其中
CD
、
DE
、
EF
、…
的圓心精英家教網(wǎng)依次為A、B、C….當(dāng)漸開(kāi)線(xiàn)延伸開(kāi)時(shí),形成三個(gè)扇形S1、S2、S3和一系列扇環(huán)S4、S5、…若正△ABC的邊長(zhǎng)為1.
(1)求出曲線(xiàn)CDEFG的總長(zhǎng)度.
(2)求出扇環(huán)S4的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案