已知△ABC中,E、F分別是AB,AC上的點,且EF∥BC,在BC邊上取一點D,連接DE,DF,要使以C,F(xiàn),D為頂點的三角形與△AEF相似,還需添加一個條件,現(xiàn)給出下列結(jié)論①DF∥AB ②DE∥AC ③CD=EF、堋螩FD=∠AEF、荨螩FD=∠AFE,其中能滿足的條件有


  1. A.
    2個
  2. B.
    3個
  3. C.
    4個
  4. D.
    5個
A
分析:畫出圖形,分別代入①②③④⑤試著求證C,F(xiàn),D為頂點的三角形與△AEF相似,判斷滿足條件的個數(shù)即可解題.
解答:①②均可以證明四邊形AEDF為平行四邊形,且EF為其對角線,
故△AEF≌△DFE,故①②正確;
③、④、⑤均無法證明C,F(xiàn),D為頂點的三角形與△AEF相似,
故③④⑤錯誤;
故滿足條件的有2個,
故選 A.
點評:本題考查了相似三角形的判定,平行四邊形一條對角線分成的兩個三角形全等的性質(zhì),考查了平行線定理.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

已知△ABC中,∠ACB=90°,AC=BC,P、Q分別是邊AB、BC上的動點,且點P不與點A、B重合,點Q不與點B、C重合.
(1)在以下五個結(jié)論中:①∠CQP=45°;②PQ=AC;③以A、P、C為頂點的三角形全等于△PQB;④以A、P、C為頂點的三角形全等于△CPQ;⑤以A、P、C為頂點的三角形相似于△CPQ.一定不成立的是
 
.(只需將結(jié)論的代號填入題中的模線上).
(2)設AC=BC=1,當CQ的長取不同的值時,△CPQ是否可能為直角三角形?若可能,請說明所有的精英家教網(wǎng)情況;若不可能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知△ABC中,DE∥BC,EF∥AB,AB=3,BC=6,AD:DB=2:1,則四邊形DBFE的周長為
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖所示,已知△ABC中,AB=AC,以AB為直徑作⊙O交BC于D,交AC于E,過D作DF⊥AC于F
(1)求證:DF是⊙O的切線;
(2)連接DE,且AB=4,若∠FDC=30°,試求△CDE的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知△ABC中,AB=3,AC=5,第三邊BC的長為一元二次方程x2-9x+20=0的一個根,則該三角形為
等腰或直角
等腰或直角
三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知△ABC中,AB=AC,AB垂直平分線交AC于D,連接BE,若∠A=40°,則∠EBC=(  )

查看答案和解析>>

同步練習冊答案