如圖,在直角坐標(biāo)平面內(nèi),函數(shù)(x>0,m是常數(shù))的圖象經(jīng)過(guò)A(1,4),B(a,b),其中a>1.過(guò)點(diǎn)A作x軸垂線(xiàn),垂足為C,過(guò)點(diǎn)B作y軸垂線(xiàn),垂足為D,連接AD,DC,CB.
(1)若△ABD的面積為4,求點(diǎn)B的坐標(biāo);
(2)求證:DC∥AB;
(3)當(dāng)AD=BC時(shí),求直線(xiàn)AB的函數(shù)解析式.

【答案】分析:(1)由函數(shù)(x>0,m是常數(shù))的圖象經(jīng)過(guò)A(1,4),可求m=4,由已知條件可得B點(diǎn)的坐標(biāo)為(a,),又由△ABD的面積為4,即a(4-)=4,得a=3,所以點(diǎn)B的坐標(biāo)為(3,);
(2)依題意可證,=a-1,=a-1,,所以DC∥AB;
(3)由于DC∥AB,當(dāng)AD=BC時(shí),有兩種情況:①當(dāng)AD∥BC時(shí),四邊形ADCB是平行四邊形,由(2)得,點(diǎn)B的坐標(biāo)是
(2,2),設(shè)直線(xiàn)AB的函數(shù)解析式為y=kx+b,用待定系數(shù)法可以求出解析式(把點(diǎn)A,B的坐標(biāo)代入),是y=-2x+6.
②當(dāng)AD與BC所在直線(xiàn)不平行時(shí),四邊形ADCB是等腰梯形,則BD=AC,可求點(diǎn)B的坐標(biāo)是(4,1),設(shè)直線(xiàn)AB的函數(shù)解析式
y=kx+b,用待定系數(shù)法可以求出解析式(把點(diǎn)A,B的坐標(biāo)代入),是y=-x+5.
解答:(1)解:∵函數(shù)y=(x>0,m是常數(shù))圖象經(jīng)過(guò)A(1,4),
∴m=4.
∴y=
設(shè)BD,AC交于點(diǎn)E,據(jù)題意,可得B點(diǎn)的坐標(biāo)為(a,),D點(diǎn)的坐標(biāo)為(0,),E點(diǎn)的坐標(biāo)為(1,),
∵a>1,
∴DB=a,AE=4-
由△ABD的面積為4,即a(4-)=4,
得a=3,
∴點(diǎn)B的坐標(biāo)為(3,);

(2)證明:據(jù)題意,點(diǎn)C的坐標(biāo)為(1,0),DE=1,
∵a>1,
易得EC=,BE=a-1,
=a-1,=a-1.
且∠AEB=∠CED,
∴△AEB∽△CED,
∴∠ABE=∠CDE,
∴DC∥AB;

(3)解:∵DC∥AB,
∴當(dāng)AD=BC時(shí),有兩種情況:
①當(dāng)AD∥BC時(shí),四邊形ADCB是平行四邊形,由(2)得,

∴a-1=1,得a=2.
∴點(diǎn)B的坐標(biāo)是(2,2).
設(shè)直線(xiàn)AB的函數(shù)解析式為y=kx+b,把點(diǎn)A,B的坐標(biāo)代入,
,
解得
故直線(xiàn)AB的函數(shù)解析式是y=-2x+6.
②當(dāng)AD與BC所在直線(xiàn)不平行時(shí),四邊形ADCB是等腰梯形,則BD=AC,
∴a=4,
∴點(diǎn)B的坐標(biāo)是(4,1).
設(shè)直線(xiàn)AB的函數(shù)解析式為y=kx+b,把點(diǎn)A,B的坐標(biāo)代入,

解得,
故直線(xiàn)AB的函數(shù)解析式是y=-x+5.
綜上所述,所求直線(xiàn)AB的函數(shù)解析式是y=-2x+6或y=-x+5.
點(diǎn)評(píng):本題要注意利用一次函數(shù)和反比例函數(shù)的特點(diǎn),列出方程,求出未知數(shù)的值,用待定系數(shù)法從而求得其解析式.
主要是注意分類(lèi)討論和待定系數(shù)法的運(yùn)用,需學(xué)生熟練掌握.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在直角坐標(biāo)平面xOy中,拋物線(xiàn)C1的頂點(diǎn)為A(-1,-4),且過(guò)點(diǎn)B(-3,0)
(1)寫(xiě)出拋物線(xiàn)C1與x軸的另一個(gè)交點(diǎn)M的坐標(biāo);
(2)將拋物線(xiàn)C1向右平移2個(gè)單位得拋物線(xiàn)C2,求拋物線(xiàn)C2的解析式;
(3)寫(xiě)出陰影部分的面積S.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在直角坐標(biāo)平面中,Rt△ABC的斜邊AB在x軸上,直角頂點(diǎn)C在y軸的負(fù)半軸上,cos∠ABC=
45
,點(diǎn)P在線(xiàn)段OC上,且PO、OC的長(zhǎng)是方程x2-15x+36=0的兩根.
(1)求P點(diǎn)坐標(biāo);
(2)求AP的長(zhǎng);
(3)在x軸上是否存在點(diǎn)Q,使以A、Q、C、P為頂點(diǎn)的四邊形是梯形?若存在,請(qǐng)求出直線(xiàn)PQ的解析式;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在直角坐標(biāo)平面內(nèi),函數(shù)y=
m
x
(x>0,m是常熟)的圖象經(jīng)過(guò)A(1,4),B(a,b),其中a>1,過(guò)點(diǎn)A作x軸垂線(xiàn),垂足為C,過(guò)點(diǎn)B作y軸垂線(xiàn),垂足為D,連接AD,DC,CB
(Ⅰ)求函數(shù)y=
m
x
的解析式;
(Ⅱ)若△ABD的面積為4,求點(diǎn)B的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

完成下列各題:
(1)解方程組
2x+y=2;         ①
3x-2y=10.      ②

(2)如圖,在直角坐標(biāo)平面內(nèi),O為原點(diǎn),點(diǎn)A的坐標(biāo)為(10,0),點(diǎn)B在第一象限內(nèi),BO=5,sin∠BOA=
3
5
.求cos∠BAO的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在直角坐標(biāo)平面內(nèi)的△ABC中,點(diǎn)A的坐標(biāo)為(0,2),點(diǎn)C的坐標(biāo)為(5,5),要使以A、B、C、D為頂點(diǎn)的四邊形是平行四邊形,且點(diǎn)D坐標(biāo)在第一象限,那么點(diǎn)D的坐標(biāo)是
(2,5)或(8,5)
(2,5)或(8,5)

查看答案和解析>>

同步練習(xí)冊(cè)答案