【題目】如圖,在矩形ABCD中,E為CD的中點(diǎn),F(xiàn)為BE上的一點(diǎn),連結(jié)CF并延長(zhǎng)交AB于點(diǎn)M,MN⊥CM交射線AD于點(diǎn)N.
(1)當(dāng)F為BE中點(diǎn)時(shí),求證:AM=CE;
(2)若 =2,求的值;
(3)若=n,當(dāng)n為何值時(shí),MN∥BE?
【答案】(1)詳見解析;(2)3;(3)n=4.
【解析】
試題分析:(1)如圖1,易證△BMF≌△ECF,則有BM=EC,然后根據(jù)E為CD的中點(diǎn)及AB=DC就可得到AM=EC;(2)如圖2,設(shè)MB=a,易證△ECF∽△BMF,根據(jù)相似三角形的性質(zhì)可得EC=2a,由此可得AB=4a,AM=3a,BC=AD=2a.易證△AMN∽△BCM,根據(jù)相似三角形的性質(zhì)即可得到AN= a,從而可得ND=AD﹣AN=a,就可求出的值;(3)如圖3,設(shè)MB=a,同(2)可得BC=2a,CE=na.由MN∥BE,MN⊥MC可得∠EFC=∠HMC=90°,從而可證到△MBC∽△BCE,然后根據(jù)相似三角形的性質(zhì)即可求出n的值.
試題解析:(1)當(dāng)F為BE中點(diǎn)時(shí),如圖1,
則有BF=EF.
∵四邊形ABCD是矩形,
∴AB=DC,AB∥DC,
∴∠MBF=∠CEF,∠BMF=∠ECF.
在△BMF和△ECF中,
,
∴△BMF≌△ECF,
∴BM=EC.
∵E為CD的中點(diǎn),
∴EC=DC,
∴BM=EC=DC=AB,
∴AM=BM=EC;
(2)如圖2,
設(shè)MB=a,
∵四邊形ABCD是矩形,
∴AD=BC,AB=DC,∠A=∠ABC=∠BCD=90°,AB∥DC,
∴△ECF∽△BMF,
∴=2,
∴EC=2a,
∴AB=CD=2CE=4a,AM=AB﹣MB=3a.
∵=2,
∴BC=AD=2a.
∵MN⊥MC,
∴∠CMN=90°,
∴∠AMN+∠BMC=90°.
∵∠A=90°,
∴∠ANM+∠AMN=90°,
∴∠BMC=∠ANM,
∴△AMN∽△BCM,
∴ ,
∴ ,
∴AN=a,ND=AD﹣AN=2a﹣a=a,
∴=3;
(3)當(dāng)=n時(shí),如圖3,
設(shè)MB=a,同(2)可得BC=2a,CE=na.
∵MN∥BE,MN⊥MC,
∴∠EFC=∠HMC=90°,
∴∠FCB+∠FBC=90°.
∵∠MBC=90°,
∴∠BMC+∠FCB=90°,
∴∠BMC=∠FBC.
∵∠MBC=∠BCE=90°,
∴△MBC∽△BCE,
∴ ,
∴ ,
∴n=4.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,O是△ABC內(nèi)一點(diǎn),且O到三邊AB、BC、CA的距離OF=OD=OE,若∠BAC=70°,∠BOC= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果多項(xiàng)式32+2xyn+y2是一個(gè)四次多項(xiàng)式,那么n=___,多項(xiàng)式按照y的降冪排列是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】樣本數(shù)據(jù)3,5,n,6,8的眾數(shù)是8,則這組數(shù)的中位數(shù)是( )
A.3B.5C.6D.8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】本學(xué)期開學(xué)初,學(xué)校體育組對(duì)九年級(jí)某班50名學(xué)生進(jìn)行了跳繩項(xiàng)目的測(cè)試,根據(jù)測(cè)試成績(jī)制作了下面兩個(gè)統(tǒng)計(jì)圖.根據(jù)統(tǒng)計(jì)圖解答下列問題:
(1)在扇形統(tǒng)計(jì)圖中,得5分學(xué)生的測(cè)試成績(jī)所占扇形的圓心角度數(shù)為 ;
(2)被測(cè)學(xué)生跳繩測(cè)試成績(jī)的眾數(shù)是 分;中位數(shù)是 分;
(3)本次測(cè)試成績(jī)的平均分是多少分?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明和同學(xué)做“拋擲質(zhì)地均勻的硬幣試驗(yàn)”獲得的數(shù)據(jù)如下表
拋擲次數(shù) | 100 | 200 | 300 | 400 | 500 |
正面朝上的頻數(shù) | 53 | 98 | 156 | 202 | 249 |
若拋擲硬幣的次數(shù)為1000,則“正面朝上”的頻數(shù)最接近( )
A.200B.300C.400D.500
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】今年以來,“新型冠狀肺炎”流行,這種病毒的直徑大約為150納米,1納米=0.000000001米=10-9米,把150納米用科學(xué)記數(shù)法表示正確的是( )
A.1.5×10-2米B.1.5×10-7米C.1.5×10-9米D.1.5×10-11米
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=x2+bx+c的圖象與x軸的一個(gè)交點(diǎn)為B(5,0),另一個(gè)交點(diǎn)為A,且與y軸交于點(diǎn)C(0,5).
(1)求直線BC與拋物線的解析式;
(2)若點(diǎn)M是拋物線在x軸下方圖象上的一動(dòng)點(diǎn),過點(diǎn)M作MN∥y軸交直線BC于點(diǎn)N,求MN的最大值;
(3)若點(diǎn)P是拋物線在x軸下方圖象上任意一點(diǎn),以BC為邊作平行四邊形CBPQ,當(dāng)平行四邊形CBPQ的面積為30時(shí),求點(diǎn)P的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com