如圖,一游人由山腳A沿坡角為30°的山坡AB行走600m,到達一個景點B,再由B沿山破BC行走200m到達山頂C,若在山頂C處觀測到景點B的俯角為45°,則山高CD等于______m.(結果用根號表示)
過B作BF⊥AD于F,BE⊥CD于E,如圖,
∵在山頂C處觀測到景點B的俯角為45°,
∴△BEC為等腰直角三角形,
而BC=200m,
∴CE=
2
2
BC=100
2
m;
∵∠A=30°,AB=600m,
∴BF=
1
2
AB=300m,
∴CD=CE+ED=(100
2
+300)m.
故答案為:100
2
+300.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

為緩解“停車難”問題,某單位擬建造地下停車庫,建筑設計師提供了該地下停車庫的設計示意圖.按規(guī)定,地下停車庫坡道口上方要張貼限高標志,以便告知停車人車輛能否安全駛入.(其中AB=9m,BC=0.5m)為標明限高,請你根據(jù)該圖計算CE.(精確到0.1m)(sin18°≈0.3090,cos18°≈0.9511,tan18°≈0.3249)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

在Rt△ABC中,∠C=90°,若a=6,∠B=30°,則c和tanA的值分別為( 。
A.12,
3
3
B.12,
3
C.4
3
3
D.2
3
,
3

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,△ABC是學生小金家附近的一塊三角形綠化區(qū)的示意圖,為增強體質(zhì),他每天早晨都沿著綠化區(qū)周邊小路AB、BC、CA跑步(小路的寬度不計).觀測得點B在點A的南偏東30°方向上,點C在點A的南偏東60°的方向上,點B在點C的北偏西75°方向上,AC間距離為400米.問小金沿三角形綠化區(qū)的周邊小路跑一圈共跑了多少米?
(參考數(shù)據(jù):
2
≈1.414,
3
≈1.732)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

為了測量樓房BC的高度,在距離樓房30米的A處,測得樓頂B的仰角為α,那么樓房BC的高為______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,四邊形ABCD內(nèi)接于半圓O,AB為直徑,AB=4,AD=DC=1,則BC的長為( 。
A.
7
2
B.
15
C.2
3
D.
7
4

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

在△ABC中,AB=AC,D為BC上一點,由D分別作DE⊥AB于E,DF⊥AC于F.設DE=a,DF=b,且實數(shù)a,b滿足9a2-24ab+16b2=0,并有2a2b=2566,∠A使得方程
1
4
x2-x•sinA+
3
sinA-
3
4
=0有兩個相等的實數(shù)根.
(1)試求實數(shù)a,b的值;
(2)試求線段BC的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,△ABC中,AB=AC,∠A=45°,AC的垂直平分線分別交AB,AC于D,E兩點,連接CD.如果AD=1,那么tan∠BCD=______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,在熱氣球C上測得兩建筑物A、B底部的俯角分別為30°和60°.如果這時氣球的垂直高度CD為90米.且點A、D、B在同一直線上,則建筑物A、B間的距離為______.米.

查看答案和解析>>

同步練習冊答案