如圖,在四邊形ABCD中,AB=BC,BF是∠ABC的平分線,AF∥DC,連接AC、CF,求證:CA是∠DCF的平分線。

 

【答案】

證明∠ACF=∠ACD得出CA平分∠DCF

【解析】

試題分析:∵BF是∠ABC的平分線

∴∠ ABF=∠CBF      

在△ABF與△CBF中

 

∴△ABF≌△CBF(SAS)         

∴AF=CF

∴∠CAF=∠ACF         

∵AF∥CD,

∴∠CAF=∠ACD          

∴∠ACF=∠ACD,

∴CA平分∠DCF            

考點:三角形全等和角平分線

點評:本題考查三角形全等和角平分線的知識,掌握判定三角形全等的方法,熟悉角平分線的性質是解答本題的重要方法

 

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2013•赤峰)如圖,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,點D從點C出發(fā)沿CA方向以4cm/秒的速度向點A勻速運動,同時點E從點A出發(fā)沿AB方向以2cm/秒的速度向點B勻速運動,當其中一個點到達終點時,另一個點也隨之停止運動.設點D、E運動的時間是t秒(0<t≤15).過點D作DF⊥BC于點F,連接DE,EF.
(1)求證:AE=DF;
(2)四邊形AEFD能夠成為菱形嗎?如果能,求出相應的t值,如果不能,說明理由;
(3)當t為何值時,△DEF為直角三角形?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,在四邊形ABC中,AD=BC,AB=CD.
求證:AB∥CD,AD∥BC.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在Rt△ABC中,∠BAC=90°,將△ABC沿線段BC向右平移得到△DEF,使CE=AE,連結AD、AE、CD,則下列結論:①AD∥BE且AD=BE;②∠ABC=∠DEF;③ED⊥AC;④四邊形AECD為菱形,其中正確的共有(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

已知:如圖,在四邊形ABC中,AD=BC,AB=CD.
求證:AB∥CD,AD∥BC.

查看答案和解析>>

科目:初中數(shù)學 來源:浙江省同步題 題型:證明題

已知:如圖,在四邊形ABC中,AD=BC,AB=CD.求證:AB∥CD,AD∥BC.

查看答案和解析>>

同步練習冊答案