圖1、圖2、圖3均是單位為1的方格圖.
(1)請把方格圖1中的帶陰影的圖形適當(dāng)剪開,重新拼成正方形;(畫出分割線,在圖2中畫出拼成正方形的草圖)
(2)所拼成正方形的邊長為多少?周長為多少?
(3)利用這個事實,在圖3的數(shù)軸上畫出表示
5
的點(diǎn)A.(要求保留畫圖痕跡)
(4)在圖3的數(shù)軸上畫出表示
8
的點(diǎn)B.(要求保留畫圖痕跡)
精英家教網(wǎng)
分析:(1)根據(jù)分割上下兩矩形,即可拼成正方形;
(2)利用勾股定理即可得出正方形的邊長與周長;
(3)利用勾股定理,借助兩直角邊長為1和2,斜邊長即為所求答案;
(4)利用勾股定理,借助兩直角邊長為2和2,斜邊長即為所求答案.
解答:解:(1)如圖1、圖2  
(2)邊長為
5
,周長為4
5

(3)如圖所示:
(4)如圖所示:
精英家教網(wǎng)
點(diǎn)評:此題主要考查了應(yīng)用與設(shè)計作圖以及在數(shù)軸上表示無理數(shù),首先要理解題意,弄清問題中對所作圖形的要求,結(jié)合對應(yīng)幾何圖形的性質(zhì)和基本作圖的方法作圖.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

13、如圖,△ABC、△ADE均是頂角為42°的等腰三角形,BC、DE分別是底邊,△ABD通過怎樣的旋轉(zhuǎn)得到△ACE?
△ABD繞點(diǎn)A逆時針旋轉(zhuǎn)42°得到△ACE

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

圖1是一個3×3方陣圖,每行的三個數(shù)、每列的三個數(shù),每斜對角的三個數(shù)相加的和均相等.

如何把9個連續(xù)整數(shù)迅速填入一個3×3方陣,使每行、每列、每斜對角的三個數(shù)相加的和均相等,是我們祖先早就在研究的問題.古代的“洛書”、漢朝徐岳的“九宮算”就揭示出祖先們得到的神奇填寫方法.圖1顯示出把-4,-3,-2,-1,0,1,2,3,4填入一個3×3方陣,使每行、每列、每斜對角的三個數(shù)相加的和均相等的一種方法.同學(xué)們,你能正確填寫嗎?馬上試一試:
(1)請觀察圖1中數(shù)字的填寫規(guī)律,然后將下列各數(shù)組中的9個數(shù)分別填入圖2、圖3、圖4所示的9個空格中,使得每行的三個數(shù)、每列的三個數(shù),每斜對角的三個數(shù)相加的和均相等;
①6,5,4,3,2,1,0,-1,-2
②9,8,7,6,5,4,3,2,1
③-8,-6,-4,-2,0,2,4,6,8
(2)拓展探究:在圖5所示 9個空格中,填入5個2和4個-2,使得每行、每列、每斜對角的三個數(shù)的乘積都是8;
(3)拓展再探究:將25,24,23,22,21,20,19,18,17,16,15,14,13,12,11,10,9,8,7,6,5,4,3,2,1這25個數(shù)分別填入圖 6所示25個空格中,使得每行、每列、每斜對角的五個數(shù)相加的和均相等.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2006•河北)探索:
在如圖1至圖3中,△ABC的面積為a.

(1)如圖1,延長△ABC的邊BC到點(diǎn)D,使CD=BC,連接DA.若△ACD的面積為S1,則S1=
a
a
(用含a的代數(shù)式表示);
(2)如圖2,延長△ABC的邊BC到點(diǎn)D,延長邊CA到點(diǎn)E,使CD=BC,AE=CA,連接DE.若△DEC的面積為S2,則S2=
2a
2a
(用含a的代數(shù)式表示);
(3)在圖2的基礎(chǔ)上延長AB到點(diǎn)F,使BF=AB,連接FD,F(xiàn)E,得到△DEF(如圖3).若陰影部分的面積為S3,則S3=
6a
6a
(用含a的代數(shù)式表示).
發(fā)現(xiàn):
像上面那樣,將△ABC各邊均順次延長一倍,連接所得端點(diǎn),得到△DEF(如圖3),此時,我們稱△ABC向外擴(kuò)展了一次.可以發(fā)現(xiàn),擴(kuò)展一次后得到的△DEF的面積是原來△ABC面積的
7
7
倍.
應(yīng)用:
去年在面積為10m2的△ABC空地上栽種了某種花卉.今年準(zhǔn)備擴(kuò)大種植規(guī)模,把△ABC向外進(jìn)行兩次擴(kuò)展,第一次由△ABC擴(kuò)展成△DEF,第二次由△DEF擴(kuò)展成△MGH(如圖4).則這兩次擴(kuò)展的區(qū)域(即陰影部分)面積共為
480
480
m2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

圖1是一個3×3方陣圖,每行的三個數(shù)、每列的三個數(shù),每斜對角的三個數(shù)相加的和均相等.

如何把9個連續(xù)整數(shù)迅速填入一個3×3方陣,使每行、每列、每斜對角的三個數(shù)相加的和均相等,是我們祖先早就在研究的問題.古代的“洛書”、漢朝徐岳的“九宮算”就揭示出祖先們得到的神奇填寫方法.圖1顯示出把-4,-3,-2,-1,0,1,2,3,4填入一個3×3方陣,使每行、每列、每斜對角的三個數(shù)相加的和均相等的一種方法.同學(xué)們,你能正確填寫嗎?馬上試一試:
(1)請觀察圖1中數(shù)字的填寫規(guī)律,然后將下列各數(shù)組中的9個數(shù)分別填入圖2、圖3、圖4所示的9個空格中,使得每行的三個數(shù)、每列的三個數(shù),每斜對角的三個數(shù)相加的和均相等;
①6,5,4,3,2,1,0,-1,-2
②9,8,7,6,5,4,3,2,1
③-8,-6,-4,-2,0,2,4,6,8
(2)拓展探究:在圖5所示 9個空格中,填入5個2和4個-2,使得每行、每列、每斜對角的三個數(shù)的乘積都是8;
(3)拓展再探究:將25,24,23,22,21,20,19,18,17,16,15,14,13,12,11,10,9,8,7,6,5,4,3,2,1這25個數(shù)分別填入圖 6所示25個空格中,使得每行、每列、每斜對角的五個數(shù)相加的和均相等.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:重慶市期末題 題型:探究題

圖1是一個3×3方陣圖,每行的三個數(shù)、每列的三個數(shù),每斜對角的三個數(shù)相加的和均相等.如何把9個連續(xù)整數(shù)迅速填入一個3×3方陣,使每行、每列、每斜對角的三個數(shù)相加的和均相等,是我們祖先早就在研究的問題.古代的“洛書”、漢朝徐岳的“九宮算”就揭示出祖先們得到的神奇填寫方法.圖1顯示出把﹣4,﹣3,﹣2,﹣1,0,1,2,3,4填入一個3×3方陣,使每行、每列、每斜對角的三個數(shù)相加的和均相等的一種方法.同學(xué)們,你能正確填寫嗎?馬上試一試:
(1)請觀察圖1中數(shù)字的填寫規(guī)律,然后將下列各數(shù)組中的9個數(shù)分別填入圖2、圖3、圖4所示的9個空格中,使得每行的三個數(shù)、每列的三個數(shù),每斜對角的三個數(shù)相加的和均相等;
①6,5,4,3,2,1,0,﹣1,﹣2
②9,8,7,6,5,4,3,2,1
③﹣8,﹣6,﹣4,﹣2,0,2,4,6,8
(2)拓展探究:在圖5所示 9個空格中,填入5個2和4個﹣2,使得每行、每列、每斜對角的三個數(shù)的乘積都是8;
(3)拓展再探究:將25,24,23,22,21,20,19,18,17,16,15,14,13,12,11,10,9,8,7,6,5,4,3,2,1這25個數(shù)分別填入圖 6所示25個空格中,使得每行、每列、每斜對角的五個數(shù)相加的和均相等.

查看答案和解析>>

同步練習(xí)冊答案