操作與探究
我們知道:過任意一個三角形的三個頂點能作一個圓,探究過四邊形四個頂點作圓的條件.
(1)分別測量圖1、2、3各四邊形的內(nèi)角,如果過某個四邊形的四個頂點能一個圓,那么其相對的兩個角之間有什么關(guān)系?證明你的發(fā)現(xiàn).

(2)如果過某個四邊形的四個頂點不能一個圓,那么其相對的兩個角之間有上面的關(guān)系嗎?試結(jié)合圖4、5的兩個圖說明其中的道理.(提示:考慮∠B+∠D與180°之間的關(guān)系)

由上面的探究,試歸納出判定過四邊形的四個頂點能作一個圓的條件.
分析:根據(jù)圓內(nèi)接四邊形的對角互補(bǔ)可知這些四邊形的對角互補(bǔ).
解答:解:(1)對角互補(bǔ)(對角之和等于180°);

(2)圖1中,∠B+∠D<180°.
圖2中,∠B+∠D>180°.
過四邊形的四個頂點能作一個圓的條件是:對角互補(bǔ)(對角之和等于180°).
點評:本題考查了確定圓的條件,圓內(nèi)接四邊形的性質(zhì).圓內(nèi)接四邊形的性質(zhì)是溝通角相等關(guān)系的重要依據(jù),在應(yīng)用此性質(zhì)時,要注意與圓周角定理結(jié)合起來.在應(yīng)用時要注意是對角,而不是鄰角互補(bǔ).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2013-2014學(xué)年北京市密云九年級上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題

操作與探究

我們知道:過任意一個三角形的三個頂點能作一個圓,探究過四邊形四個頂點作圓的條件。

(1)分別測量下面各四邊形的內(nèi)角,如果過某個四邊形的四個頂點能一個圓,那么其相對的兩個角之間有什么關(guān)系?證明你的發(fā)現(xiàn).

(2) 如果過某個四邊形的四個頂點不能一個圓,那么其相對的兩個角之間有上面的關(guān)系嗎?試結(jié)合下面的兩個圖說明其中的道理.(提示:考慮

由上面的探究,試歸納出判定過四邊形的四個頂點能作一個圓的條件.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

作業(yè)寶(1)閱讀理解:
我們知道,只用直尺和圓規(guī)不能解決的三個經(jīng)典的希臘問題之一是三等分任意角,但是這個任務(wù)可以借助如圖1所示的一邊上有刻度的勾尺完成,勾尺的直角頂點為P,
“寬臂”的寬度=PQ=QR=RS,(這個條件很重要哦。┕闯叩囊贿匨N滿足M,N,Q三點共線(所以PQ⊥MN).
下面以三等分∠ABC為例說明利用勾尺三等分銳角的過程:
第一步:畫直線DE使DE∥BC,且這兩條平行線的距離等于PQ;
第二步:移動勾尺到合適位置,使其頂點P落在DE上,使勾尺的MN邊經(jīng)過點B,同時讓點R落在∠ABC的BA邊上;
第三步:標(biāo)記此時點Q和點P所在位置,作射線BQ和射線BP.
請完成第三步操作,圖中∠ABC的三等分線是射線______、______.
(2)在(1)的條件下補(bǔ)全三等分∠ABC的主要證明過程:
∵_(dá)_____,BQ⊥PR,
∴BP=BR.(線段垂直平分線上的點與這條線段兩個端點的距離相等)
∴∠______=∠______.
∵PQ⊥MN,PT⊥BC,PT=PQ,
∴∠______=∠______.
(角的內(nèi)部到角的兩邊距離相等的點在角的平分線上)
∴∠______=∠______=∠______.
(3)在(1)的條件下探究:數(shù)學(xué)公式是否成立?如果成立,請說明理由;如果不成立,請在圖2中∠ABC的外部畫出數(shù)學(xué)公式(無需寫畫法,保留畫圖痕跡即可).

查看答案和解析>>

同步練習(xí)冊答案