【題目】1)在圖中作出△ABC關(guān)于直線m對稱的△ABC′,并寫出A′、B′、C′三點的坐標(biāo)(2)猜想:坐標(biāo)平面內(nèi)任意點Px,y)關(guān)于直線m對稱點P′的坐標(biāo)為   

【答案】見解析;A′(5,5), B′(6,2), C′(4,1); ⑵ P′(2-x, y

【解析】

(1)直接利用關(guān)于直線對稱點的性質(zhì)得出對應(yīng)點位置進(jìn)而得出答案;
(2)利用對稱軸為直線m=1,進(jìn)而得出P′點坐標(biāo).

(1)如圖所示:△A′B′C′,即為所求, A′(5,5), B′(6,2), C′(4,1);

(2)∵ABC的內(nèi)部一點P(x,y),

設(shè)點P關(guān)于直線m對稱的點P′的橫坐標(biāo)為:a,

=1,故a=2x,

P關(guān)于直線m對稱的點P′的坐標(biāo)是(2x,y).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:A(0,1),B(2,0),C(4,3)

(1)在直角坐標(biāo)系中描出各點,畫出△ABC

(2)求△ABC的面積;

(3)設(shè)點P在坐標(biāo)軸上,且△ABP與△ABC的面積相等,求點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,則下列結(jié)論:
①a,b同號;②當(dāng)x=1和x=3時,函數(shù)值相等;③4a+b=0;④當(dāng)y=﹣2時,x的值只能取2;
⑤當(dāng)﹣1<x<5時,y<0.其中正確的有( )

A.2個
B.3個
C.4個
D.5個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀題.

材料一若一個整數(shù)m能表示成a2-b2(a,b為整數(shù))的形式,則稱這個數(shù)為完美數(shù)”.例如,3=22-12,9=32-02,12=42-22,3,9,12都是完美數(shù)”;再如,M=x2+2xy=(x+y)2-y2,(x,y是整數(shù)),所以M也是完美數(shù)”.

材料二:任何一個正整數(shù)n都可以進(jìn)行這樣的分解:n=p×q(p、q是正整數(shù),且p≤q).如果p×qn的所有這種分解中兩因數(shù)之差的絕對值最小,我們就稱p×qn的最佳分解,并且規(guī)定F(n)=.例如18=1×18=2×9=3×6,這三種分解中36的差的絕對值最小,所以就有F(18)=.請解答下列問題:

(1)8______(填寫不是)一個完美數(shù),F(8)= ______.

(2)如果mn都是完美數(shù)”,試說明mn也是完美數(shù)”.

(3)若一個兩位數(shù)n的十位數(shù)和個位數(shù)分別為x,y(1≤x≤9),n完美數(shù)x+y能夠被8整除,求F(n)的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知∠ABC =DCB,添加一個條件使ABCDCB,下列添加的條件不能使ABCDCB的是----------------------------------------------- ( ).

A. A=D B. AB=DC C. AC=DB D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,,點分別在上,且,點分別在上運動,則的最小值為______。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線,點在直線上,點到直線的距離分別為1,2

1)利用直尺和圓規(guī)作出以為底的等腰△ABC,使點在直線上(保留作圖痕跡,不寫作法).

2)若(1)中得到的△ABC為等腰直角三角形,求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示是二次函數(shù)y=ax2+bx+c圖象的一部分,圖象過A點(3,0),二次函數(shù)圖象對稱軸為x=1,給出四個結(jié)論:①b2>4ac;②bc<0;③2a+b=0;④a+b+c=0,其中正確結(jié)論是( )

A.②④
B.①③
C.②③
D.①④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知一次函數(shù)y=x+b與反比例函數(shù)y= 的圖象交于A、B兩點,其中點A的坐標(biāo)為(2,3).

(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)求點B的坐標(biāo);
(3)請根據(jù)圖象直接寫出不等式x+b> 的解集.

查看答案和解析>>

同步練習(xí)冊答案