【題目】如圖,在四邊形ABCD中,AB=AD,CB=CD,對(duì)角線AC,BD相交于點(diǎn)O,下列結(jié)論中:

①∠ABC=ADC;

AC與BD相互平分;

AC,BD分別平分四邊形ABCD的兩組對(duì)角;

四邊形ABCD的面積S=ACBD.

正確的是 (填寫所有正確結(jié)論的序號(hào))

【答案】①④

【解析】

試題解析:ABC和ADC中,

,

∴△ABC≌△ADC(SSS),

∴∠ABC=ADC,

結(jié)論正確;

②∵△ABC≌△ADC,

∴∠BAC=DAC,

AB=AD,

OB=OD,ACBD,

而AB與BC不一定相等,所以AO與OC不一定相等,

結(jié)論不正確;

可知:AC平分四邊形ABCD的BAD、BCD,

而AB與BC不一定相等,所以BD不一定平分四邊形ABCD的對(duì)角;

結(jié)論不正確;

④∵ACBD,

四邊形ABCD的面積S=SABD+SBCD=BDAO+BDCO=BD(AO+CO)=ACBD.

結(jié)論正確;

所以正確的有:①④

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,Rt△ABC中,∠B=30°,∠ACB=90°,CD⊥AB交AB于D,以CD為較短的直角邊向△CDB的同側(cè)作Rt△DEC,滿足∠E=30°,∠DCE=90°,再用同樣的方法作Rt△FGC,∠FCG=90°,繼續(xù)用同樣的方法作Rt△HIC,∠HCI=90°.若AC=a,求CI的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)平面內(nèi)已點(diǎn)A3,0)、B(-5,3),將點(diǎn)A向左平移6個(gè)單位到達(dá)C點(diǎn),將點(diǎn)B向下平移6個(gè)單位到達(dá)D點(diǎn)

1)寫出C點(diǎn)、D點(diǎn)的坐標(biāo)C __________,D ____________

2)把這些點(diǎn)按ABCDA順次連接起來,這個(gè)圖形的面積是__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在等邊△ABC中

(1)如圖1,P,Q是BC邊上的兩點(diǎn),AP=AQ,∠BAP=20°,求∠AQB的度數(shù);

(2)點(diǎn)P,Q是BC邊上的兩個(gè)動(dòng)點(diǎn)(不與點(diǎn)B,C重合),點(diǎn)P在點(diǎn)Q的左側(cè),且AP=AQ,點(diǎn)Q關(guān)于直線AC的對(duì)稱點(diǎn)為M,連接AM,PM.

①依題意將圖2補(bǔ)全;

②小茹通過觀察、實(shí)驗(yàn)提出猜想:在點(diǎn)P,Q運(yùn)動(dòng)的過程中,始終有PA=PM,小茹把這個(gè)猜想與同學(xué)們進(jìn)行交流,通過討論,形成了證明該猜想的幾種想法:

想法1:要證明PA=PM,只需證△APM是等邊三角形;

想法2:在BA上取一點(diǎn)N,使得BN=BP,要證明PA=PM,只需證△ANP≌△PCM;

想法3:將線段BP繞點(diǎn)B順時(shí)針旋轉(zhuǎn)60°,得到線段BK,要證PA=PM,只需證PA=CK,PM=CK…

請(qǐng)你參考上面的想法,幫助小茹證明PA=PM(一種方法即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果將四根木條首尾相連,在相連處用螺釘連接,就能構(gòu)成一個(gè)平面圖形.

(1)若固定三根木條AB,BC,AD不動(dòng),AB=AD=2cm,BC=5cm,如圖,量得第四根木條CD=5cm,判斷此時(shí)∠B與∠D是否相等,并說明理由.
(2)若固定一根木條AB不動(dòng),AB=2cm,量得木條CD=5cm,如果木條AD,BC的長度不變,當(dāng)點(diǎn)D移到BA的延長線上時(shí),點(diǎn)C也在BA的延長線上;當(dāng)點(diǎn)C移到AB的延長線上時(shí),點(diǎn)A、C、D能構(gòu)成周長為30cm的三角形,求出木條AD,BC的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了了解學(xué)生大課間活動(dòng)的跳繩情況,隨機(jī)抽取了50名學(xué)生每分鐘跳繩的次數(shù)進(jìn)行統(tǒng)計(jì),把統(tǒng)計(jì)結(jié)果繪制成如表和直方圖.

次數(shù)

70≤x<90

90≤x<110

110≤x<130

130≤x<150

150≤x<170

人數(shù)

8

23

16

2

1

根據(jù)所給信息,回答下列問題:

(1)本次調(diào)查的樣本容量是
(2)本次調(diào)查中每分鐘跳繩次數(shù)達(dá)到110次以上(含110次)的共有的共有人;
(3)根據(jù)上表的數(shù)據(jù)補(bǔ)全直方圖;
(4)如果跳繩次數(shù)達(dá)到130次以上的3人中有2名女生和一名男生,學(xué)校從這3人中抽取2名學(xué)生進(jìn)行經(jīng)驗(yàn)交流,求恰好抽中一男一女的概率(要求用列表法或樹狀圖寫出分析過程).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一次函數(shù)y1=﹣ x﹣1與反比例函數(shù)y2= 的圖象交于點(diǎn)A(﹣4,m).
(1)觀察圖象,在y軸的左側(cè),當(dāng)y1>y2時(shí),請(qǐng)直接寫出x的取值范圍;
(2)求出反比例函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+2與x軸交于點(diǎn)A(1,0)和B(4,0).

(1)求拋物線的解析式;
(2)若拋物線的對(duì)稱軸交x軸于點(diǎn)E,點(diǎn)F是位于x軸上方對(duì)稱軸上一點(diǎn),F(xiàn)C∥x軸,與對(duì)稱軸右側(cè)的拋物線交于點(diǎn)C,且四邊形OECF是平行四邊形,求點(diǎn)C的坐標(biāo);
(3)在(2)的條件下,拋物線的對(duì)稱軸上是否存在點(diǎn)P,使△OCP是直角三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知在△ABC中,∠A:∠B:∠C=2:3:4,CD是∠ACB平分線,求∠A和∠CDB的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案