【題目】如圖,ABBC,AE平分∠BADBC于點(diǎn)E,AEDE,1+2=90°,M,N分別是BA,CD延長(zhǎng)線上的點(diǎn),∠EAM和∠EDN的平分線交于點(diǎn)F.下列結(jié)論:①ABCD;②∠AEB+ADC=180°;DE平分∠ADC;④∠F為定值其中結(jié)論正確的有(  )

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

【答案】C

【解析】分析:先根據(jù)ABBC,AE平分∠BADBC于點(diǎn)E,AEDE,1+2=90°,EAM和∠EDN的平分線交于點(diǎn)F,由三角形內(nèi)角和定理以及平行線的性質(zhì)即可得出結(jié)論.

詳解:如圖:

ABBCAEDE,

∴∠1+AEB=90°,DEC+AEB=90°

∴∠1=DEC,

又∵∠1+2=90°,

∴∠DEC+2=90°,

∴∠C=90°,

∴∠B+C=180°

ABCD,故①正確;

∴∠ADN=BAD,

∵∠ADC+ADN=180°

∴∠BAD+ADC=180°,

又∵∠AEBBAD

AEB+ADC≠180°,故②錯(cuò)誤;

∵∠4+3=90°,2+1=90°,而∠3=1,

∴∠2=4,

ED平分∠ADC,故③正確;

∵∠1+2=90°,

∴∠EAM+EDN=360°90°=270°.

∵∠EAM和∠EDN的平分線交于點(diǎn)F,

∴∠EAF+EDF=12×270°=135°.

AEDE

∴∠3+4=90°,

∴∠FAD+FDA=135°90°=45°,

∴∠F=180°(FAD+FDA)=180°45°=135°,故④正確.

故選:C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】王偉準(zhǔn)備用一段長(zhǎng)30米的籬笆圍成一個(gè)三角形形狀的小圈,用于飼養(yǎng)家兔.已知第一條邊長(zhǎng)為a米,由于受地勢(shì)限制,第二條邊長(zhǎng)只能是第一條邊長(zhǎng)的2倍多2米.
(1)請(qǐng)用a表示第三條邊長(zhǎng);
(2)問(wèn)第一條邊長(zhǎng)可以為7米嗎?請(qǐng)說(shuō)明理由,并求出a的取值范圍;
(3)能否使得圍成的小圈是直角三角形形狀,且各邊長(zhǎng)均為整數(shù)?若能,說(shuō)明你的圍法;若不能,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若關(guān)于的二元一次方程組的解都為正數(shù).

(1)求a的取值范圍;

(2)若上述方程組的解是等腰三角形的腰和底邊的長(zhǎng),且這個(gè)等腰三角形周長(zhǎng)為9,求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列各組數(shù)中,把兩數(shù)相乘,積為1的是( )
A.2和-2
B.-2和
C.
D.和-

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】從分別標(biāo)有數(shù)﹣3,﹣2,﹣1,0,1,2,3的七張沒(méi)有明顯差別的卡片中,隨機(jī)抽取一張,所抽卡片上的數(shù)的絕對(duì)值不是正數(shù)的概率是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】A,B兩點(diǎn)在數(shù)軸上的位置如圖所示,其中O為原點(diǎn),點(diǎn)A對(duì)應(yīng)的有理數(shù)為﹣4,點(diǎn)B對(duì)應(yīng)的有理數(shù)為6.

(1)動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以每秒2個(gè)單位長(zhǎng)度的速度向右運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒(t>0).

①當(dāng)t=1時(shí),AP的長(zhǎng)為   ,點(diǎn)P表示的有理數(shù)為   ;

②當(dāng)PB=2時(shí),求t的值;

(2)如果動(dòng)點(diǎn)P以每秒6個(gè)單位長(zhǎng)度的速度從O點(diǎn)向右運(yùn)動(dòng),點(diǎn)AB分別以每秒1個(gè)單位長(zhǎng)度和每秒3個(gè)單位長(zhǎng)度的速度向右運(yùn)動(dòng),且三點(diǎn)同時(shí)出發(fā),那么經(jīng)過(guò)幾秒PA=2PB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】今年我縣中考的體育測(cè)試成績(jī)改為等級(jí)制,即把測(cè)試結(jié)果分為四個(gè)等級(jí):A級(jí):優(yōu)秀;B級(jí):良好;C級(jí):及格;D級(jí):不及格.我縣5月份舉行了全縣九年級(jí)學(xué)生體育測(cè)試.現(xiàn)從中隨機(jī)抽取了部分學(xué)生的體育成績(jī),并將其繪成了如下兩幅不完整的統(tǒng)計(jì)圖.請(qǐng)根據(jù)統(tǒng)計(jì)圖中的信息解答下列問(wèn)題:
(1)本次抽樣測(cè)試的學(xué)生人數(shù)是;
(2)圖1中∠α的度數(shù)是 , 并把圖2條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)該縣九年級(jí)有學(xué)生9000名,如果全部參加這次中考體育科目測(cè)試,請(qǐng)估算不及格的人數(shù)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】等腰三角形的_____、_______、底邊上的高互相重合.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】提出命題:如圖,在四邊形ABCD中,∠A=∠C∠ABC=∠ADC,求證:四邊形ABCD是平行四邊形.

小明提供了如下解答過(guò)程:

證明:連接BD.

∵∠1+∠3=180∠A∠2+∠4=180―∠C,∠A=∠C,

∴ ∠1+∠3=∠2+∠4.

∵∠ABC=∠ADC,

∴∠1=∠4,∠2=∠3.

∴AB∥CDAD∥BC.

∴四邊形ABCD是平行四邊形(兩組對(duì)邊分別平行的四邊形是平行四邊形.

反思交流(1)請(qǐng)問(wèn)小明的解法正確嗎?如果有錯(cuò),說(shuō)明錯(cuò)在何處,并給出正確的證明過(guò)程.

(2)用語(yǔ)言敘述上述命題:___________________________________________________.

運(yùn)用探究(3)下列條件中,能確定四邊形ABCD是平行四邊形的是_____

A. ∠A∶∠B∶∠C∶∠D=1∶2∶3∶4 B. ∠A∶∠B∶∠C∶∠D=1∶3∶1∶3

C. ∠A∶∠B∶∠C∶∠D=2∶3∶3∶2 D. ∠A∶∠B∶∠C∶∠D=1∶1∶3∶3

查看答案和解析>>

同步練習(xí)冊(cè)答案