精英家教網 > 初中數學 > 題目詳情

【題目】如圖,已知AF平分∠BAC,DE平分∠BDF,且∠1=∠2.

(1)DF∥AC嗎,為什么?

(2)DE與AF的位置關系又如何?

【答案】試題見解析

【解析】分析:(1)根據角平分線的性質可得∠2=∠BAC,∠1=∠BDF,再有∠1=∠2,可得∠BDF=∠BAC,根據同位角相等,兩直線平行即可證得結論;

(2)先根據DF∥AC可得∠2=∠BAF,再有∠1=∠2可得∠1=∠BAF,根據內錯角相等,兩直線平行即可證得結論.

解:(1)因為AF平分∠BAC,DE平分∠BDF,所以∠2=∠BAC,∠1=∠BDF,又因為∠1=∠2,所以∠BDF=∠BAC,所以DF∥AC; 

(2)DE∥AF.理由如下:因為AF平分∠BAC,所以∠2=∠BAF,又因為∠1=∠2,所以∠1=∠BAF,所以DE∥AF.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖一:在RtABC中,∠C=90°AD、BE分別是△ABC中∠A、∠B的平分線,AD、BE交于點F,過F點做FHADAC于點H,易證:AH+DB=AB;

(1)若將RtABC中∠BAC、∠ABC的內角平分線改成外角平分線,即:AF、BF分別是∠BAC、∠ABC的外角平分線交于F點,FHAF交直線ACH點,如圖二:請寫出線段AH、BD、AB之間的數量關系,并證明。

(2)若將RtABC中∠BAC、∠ABC的內角平分線改成一個是外角平分線,即:AF是∠A的內角平分線,BE是∠B的外角平分線交于F點,FHADAC于點H.如圖三:請寫出線段AHBD、AB之間的數量關系,無需證明。

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖四邊形ABCD是一塊草坪,量得四邊長AB=3m,BC=4m,DC=12m,AD=13m,∠B=90°,求這塊草坪的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在矩形ABCD中(AD>AB),點E是BC上一點,且DE=DA,AF⊥DE,垂足為點F,在下列結論中,不一定正確的是(
A.△AFD≌△DCE
B.AF= ?AD
C.AB=AF
D.BE=AD﹣DF

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知直線a,b,c,d,e,且∠1=∠2,∠3=∠4,則a與c平行嗎?為什么?

解:a與c平行.

理由:因為∠1=∠2(_________________),

所以a∥b(_________________).

因為∠3=∠4(_________________),

所以b∥c(_________________).

所以a∥c(_________________).

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,點O(0,0),A(0,1)是正方形OAA1B的兩個頂點,以OA1對角線為邊作正方形OA1A2B1,再以正方形的對角線OA2作正方形OA1A2B1,…,依此規(guī)律,則點A2017的坐標是( 。

A. (0,21008 B. (21008,21008 C. (21009,0) D. (21009,-21009

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,ABCD對角線AC、BD相交于點O,E,F(xiàn)分別是OA,OC的中點,連接BE,DF.
(1)根據題意,補全圖形;
(2)求證:BE=DF.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】等腰三角形的兩邊長是37,則這個三角形的周長等于_____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】x=﹣3,y1,則2xy+1的值為( 。

A.6B.4C.3D.6

查看答案和解析>>

同步練習冊答案