(2011•棗莊)如圖,在平面直角坐標(biāo)系xoy中,拋物線y=x2向左平移1個單位,再向下平移4個單位,得到拋物線y=(x-h)2+k,所得拋物線與x軸交于A、B兩點(點A在點B的左邊),與y軸交于點C,頂點為D.
(1)求h、k的值;
(2)判斷△ACD的形狀,并說明理由;
(3)在線段AC上是否存在點M,使△AOM與△ABC相似?若存在,求出點M的坐標(biāo);若不存在,說明理由.

【答案】分析:(1)根據(jù)“左加右減,上加下減”的平移規(guī)律即可得到h、k的值;
(2)根據(jù)(1)題所得的拋物線的解析式,即可得到A、C、D的坐標(biāo),進而可求出AC、AD、CD的長,然后再判斷△ACD的形狀;
(3)易求得B點的坐標(biāo),即可得到AB、AC、OA的長;△AOM和△ABC中,已知的相等角是∠OAM=∠BAC,若兩三角形相似,可考慮兩種情況:
①∠AOM=∠ABC,此時OM∥BC,△AOM∽△ABC;②∠AOM=∠ACB,此時△AOM∽△ACB;
根據(jù)上述兩種情況所得到的不同比例線段即可求出AM的長,進而可根據(jù)∠BAC的度數(shù)求出M點的橫、縱坐標(biāo),即可得到M點的坐標(biāo).
解答:解:(1)∵y=x2的頂點坐標(biāo)為(0,0),
∴y=(x-h)2+k的頂點坐標(biāo)D(-1,-4),
∴h=-1,k=-4 (3分)

(2)由(1)得y=(x+1)2-4
當(dāng)y=0時,
(x+1)2-4=0
x1=-3,x2=1
∴A(-3,0),B(1,0)(1分)
當(dāng)x=0時,y=(x+1)2-4=(0+1)2-4=-3
∴C點坐標(biāo)為(0,-3)
又∵頂點坐標(biāo)D(-1,-4)(1分)
作出拋物線的對稱軸x=-1交x軸于點E
作DF⊥y軸于點F
在Rt△AED中,AD2=22+42=20
在Rt△AOC中,AC2=32+32=18
在Rt△CFD中,CD2=12+12=2
∵AC2+CD2=AD2
∴△ACD是直角三角形;

(3)存在.由(2)知,OA=3,OC=3,則△AOC為等腰直角三角形,∠BAC=45°;
連接OM,過M點作MG⊥AB于點G,
AC=
①若△AOM∽△ABC,則
,AM=
∵MG⊥AB
∴AG2+MG2=AM2

OG=AO-AG=3-
∵M點在第三象限
∴M();
②若△AOM∽△ACB,則,
,
∴AG=MG=
OG=AO-AG=3-2=1
∵M點在第三象限
∴M(-1,-2).
綜上①、②所述,存在點M使△AOM與△ABC相似,且這樣的點有兩個,其坐標(biāo)分別為(),(-1,-2).
點評:此題考查了二次函數(shù)圖象的平移、直角三角形的判定、勾股定理以及相似三角形的判定和性質(zhì);需注意的是(3)題在不確定相似三角形的對應(yīng)邊和對應(yīng)角的情況下要分類討論,以免漏解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(08)(解析版) 題型:解答題

(2011•棗莊)如圖,在平面直角坐標(biāo)系xoy中,拋物線y=x2向左平移1個單位,再向下平移4個單位,得到拋物線y=(x-h)2+k,所得拋物線與x軸交于A、B兩點(點A在點B的左邊),與y軸交于點C,頂點為D.
(1)求h、k的值;
(2)判斷△ACD的形狀,并說明理由;
(3)在線段AC上是否存在點M,使△AOM與△ABC相似?若存在,求出點M的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010-2011學(xué)年江蘇省南通市如皋市九年級數(shù)學(xué)新課程結(jié)束考試試卷(解析版) 題型:選擇題

(2011•棗莊)如圖,直線AB∥CD,∠A=70°,∠C=40°,則∠E等于( )

A.30°
B.40°
C.60°
D.70°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年廣東省廣州市鐵一中學(xué)中考數(shù)學(xué)二模試卷(陳學(xué)峰)(解析版) 題型:選擇題

(2011•棗莊)如圖,點A的坐標(biāo)是(2,2),若點P在x軸上,且△APO是等腰三角形,則點P的坐標(biāo)不可能是( )

A.(4,0)
B.(1,0)
C.(-2,0)
D.(2,0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年甘肅省9市聯(lián)考中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2011•棗莊)如圖,點D在⊙O的直徑AB的延長線上,點C在⊙O上,AC=CD,∠ACD=120°.
(1)求證:CD是⊙O的切線;
(2)若⊙O的半徑為2,求圖中陰影部分的面積.

查看答案和解析>>

同步練習(xí)冊答案