【答案】
分析:(1)連接OB、OD,根據(jù)對稱性可知點(diǎn)O、D關(guān)于點(diǎn)A對稱,根據(jù)點(diǎn)B的坐標(biāo)可得點(diǎn)A的坐標(biāo),然后即可求解;
(2)根據(jù)點(diǎn)O、D的坐標(biāo)求出對稱軸的解析式為x=1,然后得到頂點(diǎn)坐標(biāo),再設(shè)出頂點(diǎn)式解析式,利用待定系數(shù)法求解即可;
(3)先根據(jù)點(diǎn)M的坐標(biāo)求出△AOM是等腰直角三角形,所以分①∠AMN=45°時(shí),求出直線MN的解析式,然后與拋物線解析式聯(lián)立求解即可得到點(diǎn)N的坐標(biāo),②∠AON=45°時(shí),求出直線ON的解析式,然后與拋物線解析式聯(lián)立求解即可得到點(diǎn)N的坐標(biāo),從而得解.
解答:解:(1)如圖,連接OB、BD,根據(jù)題意可得,點(diǎn)O、D關(guān)于點(diǎn)A對稱,
∵點(diǎn)B的坐標(biāo)為(1,3),
∴點(diǎn)A的坐標(biāo)為(1,0)
∴點(diǎn)D的坐標(biāo)為(2,0);
(2)∵拋物線過點(diǎn)O、D,
∴拋物線的對稱軸為x=1,
∴頂點(diǎn)M的坐標(biāo)為(1,-1),
設(shè)拋物線的解析式為y=a(x-1)
2-1,
∴a(0-1)
2-1=0,
解得a=1,
∴拋物線的解析式為y=(x-1)
2-1=x
2-2x+1-1=x
2-2x,
即y=x
2-2x;
(3)如圖,∵點(diǎn)M的坐標(biāo)為(1,-1),
∴△AOM是等腰直角三角形,
∴∠AOM=∠AMO=45°,
①當(dāng)∠AMN=45°時(shí),則∠AMN=45°,
設(shè)直線MN的解析式為y=x+b
1,
則1+b
1=-1,
解得b
1=-2,
∴直線MN的解析式為y=x-2,
∴
,
解得
(為點(diǎn)M的坐標(biāo),舍去),
,
∴點(diǎn)M的坐標(biāo)為(2,0),
②∠AON=45°時(shí),則∠AON=45°,
設(shè)直線MN的解析式為y=x,
則
,
解得
(為坐標(biāo)原點(diǎn),舍去),
,
∴點(diǎn)N的坐標(biāo)為(3,3),
綜上所述,點(diǎn)N的坐標(biāo)為(2,0)或(3,3).
點(diǎn)評:本題綜合考查了二次函數(shù)的性質(zhì),坐標(biāo)與圖形的性質(zhì),待定系數(shù)法求二次函數(shù)解析式,直角三角形的性質(zhì),以及函數(shù)圖象交點(diǎn)的求解方法,求出頂點(diǎn)M的坐標(biāo)是解答本題關(guān)鍵.