已知等邊△ABC和點(diǎn)P,設(shè)點(diǎn)P到△ABC三邊AB、AC、BC的距離分別為h1、h2、h3,△ABC的高為h.

若點(diǎn)P在一邊BC上(如圖①),此時(shí)h3=0,可得結(jié)論:h1+h2+h3=h.

請(qǐng)直接應(yīng)用上述信息解決下列問(wèn)題:

當(dāng)點(diǎn)P在△ABC內(nèi)(如圖②)、點(diǎn)P在△ABC外(如圖③)這兩種情況時(shí),上述結(jié)論是否還成立?若成立,請(qǐng)簡(jiǎn)述理由;若不成立,h1、h2、h3與h之間又有怎樣的關(guān)系,請(qǐng)寫(xiě)出你的猜想,不需證明.

答案:
解析:

  解:當(dāng)點(diǎn)P在△ABC內(nèi)部時(shí),結(jié)論h1+h2+h3=h仍然成立.

  如圖(1),過(guò)點(diǎn)P作NQ∥BC,分別交AB、AC、AM于點(diǎn)N、Q、K,則△ANQ仍為等邊三角形,由①可知h1+h2=AK.

  ∵NQ∥BC,KM⊥BC,PF⊥BC ∴KM=PF=h3,∴h1+h2+h3=AK+KM=AM=h.

  當(dāng)點(diǎn)P在△ABC外部時(shí),h1、h2、h3與h之間的關(guān)系為h1+h2-h(huán)3=h,如圖(2),證法同上.

分析:這是一個(gè)閱讀理解題,以點(diǎn)P在等邊三角形的邊上為基礎(chǔ),有結(jié)論“h1+h2+h3=h”成立,因此我們要把問(wèn)題②③轉(zhuǎn)化成圖①的情景過(guò)點(diǎn)P作NQ∥BC,分別交AB、AC、AM(或它們的延長(zhǎng)線(xiàn))于點(diǎn)N、Q、K(如下圖),則△ANQ仍為等邊三角形,對(duì)應(yīng)有類(lèi)似“h1+h2+h3=h”的結(jié)論.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知等邊△ABC和點(diǎn)P,設(shè)點(diǎn)P到△ABC三邊AB、AC、BC(或其延長(zhǎng)線(xiàn))的距離分別為h1、h2、h3,△ABC的高為h.
在圖(1)中,點(diǎn)P是邊BC的中點(diǎn),此時(shí)h3=0,可得結(jié)論:h1+h2+h3=h.
在圖(2),(3),(4),(5)中,點(diǎn)P分別在線(xiàn)段MC上、MC延長(zhǎng)線(xiàn)上、△ABC內(nèi)、△ABC外.
(1)請(qǐng)?zhí)骄浚簣D(2),(3),(4),(5)中,h1、h2、h3、h之間的關(guān)系;(直接寫(xiě)出結(jié)論)圖②-⑤中的關(guān)系依次是:
h1+h2+h3=h;h1-h2+h3=h;h1+h2+h3=h;h1+h2-h3=h;
(2)證明圖(2)所得結(jié)論;
(3)證明圖(4)所得結(jié)論;
(4)(附加題2分)在圖(6)中,若四邊形RBCS是等腰梯形,∠B=∠C=60°,RS=n,BC=m,點(diǎn)P在梯形內(nèi),且點(diǎn)P到四邊BR、RS、SC、CB的距離分別是h1、h2、h3、h4,橋形的高為h,則h1、h2、h3、h4、h之間的關(guān)系為:h1+h3+h4=
mhm-n
.圖(4)與圖(6)中的等式有何關(guān)系.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

31、已知等邊△ABC和點(diǎn)P,設(shè)點(diǎn)P到△ABC三邊AB、AC、BC的距離分別為h1、h2、h3,△ABC的高為h.
“若點(diǎn)P在一邊BC上(如圖1),此時(shí)h3=0,可得結(jié)論h1+h2+h3=h”
請(qǐng)直接應(yīng)用上述信息解決下列問(wèn)題:
(1)當(dāng)點(diǎn)P在△ABC內(nèi)(如圖2),(2)點(diǎn)P在△ABC外(如圖3)這兩種情況時(shí),上述結(jié)論是否還成立?若成立,請(qǐng)給予證明;若不成立,h1、h2、h3與h之間的關(guān)系如何?請(qǐng)寫(xiě)出你的猜想,不需證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知等邊△ABC和點(diǎn)P,設(shè)點(diǎn)P到△ABC三邊AB、AC、BC(或其延長(zhǎng)線(xiàn))的距離分別為h1、h2、h3,△ABC的高為h.在圖①中,點(diǎn)P是邊BC的中點(diǎn),由S△ABP+S△ACP=S△ABC得,
1
2
AB.h1+
1
2
AC.h2=
1
2
BC.h,可得h1+h2=h又因?yàn)閔3=0,所以:h1+h2+h3=h.
圖②~⑤中,點(diǎn)P分別在線(xiàn)段MC上、MC延長(zhǎng)線(xiàn)上、△ABC內(nèi)、△ABC外.
(1)請(qǐng)?zhí)骄浚簣D②~⑤中,h1、h2、h3、h之間的關(guān)系;(直接寫(xiě)出結(jié)論)
(2)說(shuō)明圖②所得結(jié)論為什么是正確的;
(3)說(shuō)明圖⑤所得結(jié)論為什么是正確的.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2007•臨夏州)[(1)-(3),10分]如圖,已知等邊△ABC和點(diǎn)P,設(shè)點(diǎn)P到△ABC三邊AB、AC、BC(或其延長(zhǎng)線(xiàn))的距離分別為h1、h2、h3,△ABC的高為h.
在圖(1)中,點(diǎn)P是邊BC的中點(diǎn),此時(shí)h3=0,可得結(jié)論:h1+h2+h3=h.
在圖(2)--(5)中,點(diǎn)P分別在線(xiàn)段MC上、MC延長(zhǎng)線(xiàn)上、△ABC內(nèi)、△ABC外.
(1)請(qǐng)?zhí)骄浚簣D(2)--(5)中,h1、h2、h3、h之間的關(guān)系;(直接寫(xiě)出結(jié)論)
(2)證明圖(2)所得結(jié)論;
(3)證明圖(4)所得結(jié)論.
(4)在圖(6)中,若四邊形RBCS是等腰梯形,∠B=∠C=60°,RS=n,BC=m,點(diǎn)P在梯形內(nèi),且點(diǎn)P到四邊BR、RS、SC、CB的距離分別是h1、h2、h3、h4,橋形的高為h,則h1、h2、h3、h4、h之間的關(guān)系為:
m(h1+h2+h3)-n(h1+h3-h4)=(m+n)h
m(h1+h2+h3)-n(h1+h3-h4)=(m+n)h
;圖(4)與圖(6)中的等式有何關(guān)系?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知等邊△ABC和點(diǎn)P,設(shè)點(diǎn)P到△ABC三邊的AB、AC、BC的距離分別是h1,h2,h3,△ABC的高為h,請(qǐng)你探索以下問(wèn)題:
(1)若點(diǎn)P在一邊BC上(圖1),此時(shí)h3=0,問(wèn)h1、h2與h之間有怎樣的數(shù)量關(guān)系?請(qǐng)說(shuō)明理由;
(2)若當(dāng)點(diǎn)P在△ABC內(nèi)(圖2),此時(shí)h1、h2、h3與h之間有怎樣的數(shù)量關(guān)系?請(qǐng)說(shuō)明理由;
(3)若點(diǎn)P在△ABC外(圖3),此時(shí)h1、h2、h3與h之間有怎樣的數(shù)量關(guān)系
h=h1+h2-h3
h=h1+h2-h3
.(請(qǐng)直接寫(xiě)出你的猜想,不需要說(shuō)明理由.)

查看答案和解析>>

同步練習(xí)冊(cè)答案