【題目】如圖,四邊形ABCD為正方形,點A的坐標為(0,1),點B的坐標為(0,﹣2),反比例函數(shù)y= 的圖象經過點C,一次函數(shù)y=ax+b的圖象經過A、C兩點.
(1)求反比例函數(shù)與一次函數(shù)的解析式;
(2)求反比例函數(shù)與一次函數(shù)的另一個交點M的坐標;
(3)根據圖象寫出使一次函數(shù)的值大于反比例函數(shù)的值的x的取值范圍.
【答案】
(1)
解:∵點A的坐標為(0,1),點B的坐標為(0,﹣2),
∴AB=1+2=3,
∵四邊形ABCD為正方形,
∴Bc=3,
∴C(3,﹣2),
把C(3,﹣2)代入y= 得k=3×(﹣2)=﹣6,
∴反比例函數(shù)解析式為y=﹣ ,
把C(3,﹣2),A(0,1)代入y=ax+b得 ,解得 ,
∴一次函數(shù)解析式為y=﹣x+1;
(2)
解:解方程組 得 或 ,
∴M點的坐標為(﹣2,3);
(3)
解:∵一次函數(shù)的值與反比例函數(shù)的圖象的兩個交點是M(﹣2,3),C(3,﹣2),
∴由圖象可知,x的取值范圍是x<﹣2或0<<3.
【解析】(1)先根據A點和B點坐標得到正方形的邊長,則BC=3,于是可得到C(3,﹣2),然后利用待定系數(shù)法求反比例函數(shù)與一次函數(shù)的解析式;(2)通過解關于反比例函數(shù)解析式與一次函數(shù)的解析式所組成的方程組可得到M點的坐標;(3)根據函數(shù)的圖象結合交點即可求得.
【考點精析】通過靈活運用反比例函數(shù)的圖象,掌握反比例函數(shù)的圖像屬于雙曲線.反比例函數(shù)的圖象既是軸對稱圖形又是中心對稱圖形.有兩條對稱軸:直線y=x和 y=-x.對稱中心是:原點即可以解答此題.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中(AD>AB),點E是BC上一點,且DE=DA,AF⊥DE,垂足為點F,在下列結論中,不一定正確的是( )
A.△AFD≌△DCE
B.AF= AD
C.AB=AF
D.BE=AD﹣DF
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c的圖象如圖所示,則一次函數(shù)y=bx+b2﹣4ac與反比例函數(shù)y= 在同一坐標系內的圖象大致為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD為正方形,點A坐標為(0,1),點B坐標為(0,﹣2),反比例函數(shù)y= 的圖象經過點C,一次函數(shù)y=ax+b的圖象經過A,C兩點.
(1)求反比例函數(shù)與一次函數(shù)的解析式;
(2)若點P是反比例函數(shù)圖象上的一點,△OAP的面積恰好等于正方形ABCD的面積,求P點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A在雙曲線y= 上,點B在雙曲線y= (k≠0)上,AB∥x軸,過點A作AD⊥x軸于D.連接OB,與AD相交于點C,若AC=2CD,則k的值為( )
A.6
B.9
C.10
D.12
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一個批發(fā)商銷售成本為20元/千克的某產品,根據物價部門規(guī)定:該產品每千克售價不得超過90元,在銷售過程中發(fā)現(xiàn)的售量y(千克)與售價x(元/千克)滿足一次函數(shù)關系,對應關系如下表:
售價x(元/千克) | … | 50 | 60 | 70 | 80 | … |
銷售量y(千克) | … | 100 | 90 | 80 | 70 | … |
(1)求y與x的函數(shù)關系式;
(2)該批發(fā)商若想獲得4000元的利潤,應將售價定為多少元?
(3)該產品每千克售價為多少元時,批發(fā)商獲得的利潤w(元)最大?此時的最大利潤為多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是一個橫斷面為拋物線形狀的拱橋,當水面寬4m時,拱頂(拱橋洞的最高點)離水面2m,當水面下降1m時,水面的寬度為( )
A.3
B.2
C.3
D.2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,將兩個完全相同的三角形紙片ABC和DEC重合放置,其中∠C=900,∠B=∠E=300.
(1)操作發(fā)現(xiàn)如圖2,固定△ABC,使△DEC繞點C旋轉。當點D恰好落在BC邊上時,填空:線段DE與AC的位置關系是 ;
② 設△BDC的面積為S1,△AEC的面積為S2。則S1與S2的數(shù)量關系是 。
(2)猜想論證
當△DEC繞點C旋轉到圖3所示的位置時,小明猜想(1)中S1與S2的數(shù)量關系仍然成立,并嘗試分別作出了△BDC和△AEC中BC,CE邊上的高,請你證明小明的猜想。
(3)拓展探究
已知∠ABC=600,點D是其角平分線上一點,BD=CD=4,OE∥AB交BC于點E(如圖4),若在射線BA上存在點F,使S△DCF =S△BDC,請直接寫出相應的BF的長
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,菱形ABCD的對角線相交于坐標原點,點A的坐標為(a,2),點B的坐標為(﹣1,﹣ ),點C的坐標為(2 ,c),那么a,c的值分別是( )
A.a=﹣1,c=﹣
B.a=﹣2 ,c=﹣2
C.a=1,c=
D.a=2 ,c=2
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com