【題目】關于的一次函數(shù)和反比例函數(shù)的圖像都經過點

求:(1)一次函數(shù)和反比例函數(shù)的解析式;

2)若一次函數(shù)和反比例函數(shù)圖像的另一個交點的坐標為,請結合圖像直接寫出取值范圍.

【答案】1,;(2

【解析】

1)把兩函數(shù)的交點A的坐標分別代入y1=﹣2x+my2中求出m、n即可得到兩函數(shù)解析式;

2)先大致畫出兩函數(shù)圖象,利用函數(shù)圖象,寫出直線在反比例函數(shù)圖象上方所對應的自變量的范圍即可.

解:(1)把A(﹣2,1)代入y1=﹣2x+m

4+m1

解得m=﹣3,

∴一次函數(shù)解析式為y1=﹣2x3

A2,﹣1)代入y2

n+12×(﹣1)=﹣2

∴反比例函數(shù)的解析式為y2=﹣;

2)如圖,當x<﹣20x時,y1y2

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩人分別從各自家出發(fā)乘坐出租車前往智博會,由于堵車,兩人同時選擇就近下車,已知甲車在乙車前面200米的A地下車,然后分別以各自的速度勻速走向會場,3分鐘后,乙發(fā)現(xiàn)有物品遺落在出租車上,于是立即以不變的速度返回尋找,找到出租車時,出租車恰好向會場方向行駛了100米,乙拿到物品后立即以原速返回繼續(xù)走向會場,同時甲以先前速度的一半走向會場,又經過10分鐘,乙在B地追上甲,兩人隨后一起以甲放慢后的速度行走1分鐘到達會場,甲、乙兩人相距的路程y(m)與甲行走的時間x(min)之間的關系如圖所示,(乙拿物品的時間忽略不計),則A地距離智博會會場的距離為_______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,菱形ABCD的三個頂點A,B,D在坐標軸上,且已知點A,),點B,),現(xiàn)有拋物線m經過點B,COD的中點.

1)求拋物線m的解析式;

2)在拋物線上是否存在點P,使得?若存在,求出點P的坐標,若不存在,請說明理由;

3)拋物線mx軸的另一交點為F,M是線段AC上一動點,求的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,一次函數(shù)y=﹣x+3的圖象與反比例函數(shù)y的圖象相交于Am,6),B兩點.

1)求反比例函數(shù)的表達式及點B的坐標;

2)點Px軸上,連接AP,BP,若△ABP的面積為18,求滿足條件的點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線,直線與拋物線、軸分別相交于、

1時,點的坐標為________;

2)當兩點重合時,求的值;

3)當點達到最高時,求拋物線解析式;

4)在拋物線軸所圍成的封閉圖形的邊界上,我們把橫坐標是整數(shù)的點稱為可點,直接寫出可點的個數(shù)為____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】隨著中國經濟的快速發(fā)展以及科技水平的飛速提高,中國高鐵正迅速崛起,高鐵大大縮短了時空距離,改變了人們的出行方式,如圖兩地被大山阻隔,由地到地需要繞行地,若打通穿山隧道由地到地,再由地到地可大大縮短路程.,,,公里,公里,求隧道打通后與打通前相比,從地到地的路程將約縮短多少公里?(參考數(shù)據(jù):,

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】正方形的頂點,點,反比例函數(shù)

(1)如圖1,雙曲線經過點時求反比例函數(shù)的關系式;

 

(2)如圖2,正方形向下平移得到正方形軸上,反比例函數(shù)的圖象分別交正方形的邊、邊于點

①求的面積;

②如圖3,軸上一點,是否存在是等腰三角形,若存在直接寫出點坐標,若不存在請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某班為推薦選手參加學校舉辦的祖國在我心中演講比賽活動,先在班級中進行預賽,班主任根據(jù)學生的成績從高到低劃分為A,BC,D四個等級,并繪制了不完整的兩種統(tǒng)計圖表.請根據(jù)圖中提供的信息,回答下列問題:

1a的值為 ;

2)求C等級對應扇形的圓心角的度數(shù);

3)獲得A等級的4名學生中恰好有13女,該班將從中隨機選取2人,參加學校舉辦的演講比賽,請利用列表法或畫樹狀圖法,求恰好選中一男一女參加比賽的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(2017江西。┤鐖D1,研究發(fā)現(xiàn),科學使用電腦時,望向熒光屏幕畫面的視線角”α約為20°,而當手指接觸鍵盤時,肘部形成的手肘角”β約為100°.圖2是其側面簡化示意圖,其中視線AB水平,且與屏幕BC垂直.

(1)若屏幕上下寬BC=20cm,科學使用電腦時,求眼睛與屏幕的最短距離AB的長;

(2)若肩膀到水平地面的距離DG=100cm,上臂DE=30cm,下臂EF水平放置在鍵盤上,其到地面的距離FH=72cm.請判斷此時β是否符合科學要求的100°?

(參考數(shù)據(jù):sin69°≈,cos21°≈,tan20°≈,tan43°≈,所有結果精確到個位)

查看答案和解析>>

同步練習冊答案