已知:四邊形ABCD的對(duì)角線AC、BD相交于點(diǎn)O,給出下列4個(gè)條件:①AB∥CD;②OA=OC;③AB=CD;④AD∥BC從中任取兩個(gè)條件,能推出四邊形ABCD是平行四邊形的概率是( )
A.
B.
C.
D.
【答案】分析:根據(jù)概率的求法,找準(zhǔn)兩點(diǎn):①全部情況的總數(shù);②符合條件的情況數(shù)目;二者的比值就是其發(fā)生的概率,即可求出答案.
解答:解:有①與②,①與③,①與④,②與③,②與④,③與④六種情況,
①與④根據(jù)兩組對(duì)邊分別平行的四邊形是平行四邊形,能推出四邊形ABCD為平行四邊形;
①與③根據(jù)一組對(duì)邊平行且相等的四邊形是平行四邊形,能推出四邊形ABCD為平行四邊形;
①與②,②與④根據(jù)對(duì)角線互相平分的四邊形是平行四邊形,能推出四邊形ABCD為平行四邊形;
所以能推出四邊形ABCD為平行四邊形的有4組,
所以能推出四邊形ABCD是平行四邊形的概率是=
故選C.
點(diǎn)評(píng):此題考查概率的求法:如果一個(gè)事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)=
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

我們給出如下定義:如果四邊形中一對(duì)頂點(diǎn)到另一對(duì)頂點(diǎn)所連對(duì)角線的距離相等,則把這對(duì)頂點(diǎn)叫做這個(gè)四邊形的一對(duì)等高點(diǎn).例如:如圖1,平行四邊形ABCD中,可證點(diǎn)A、C到BD的距離相等,所以點(diǎn)A、C是平行四邊形ABCD的一對(duì)等高點(diǎn),同理可知點(diǎn)B、D也是平行四邊形ABCD的一對(duì)等高點(diǎn).
(1)如圖2,已知平行四邊形ABCD,請(qǐng)你在圖2中畫(huà)出一個(gè)只有一對(duì)等高點(diǎn)的四邊形ABCE(要求:畫(huà)出必要的輔助線);
(2)已知P是四邊形ABCD對(duì)角線BD上任意一點(diǎn)(不與B、D點(diǎn)重合),請(qǐng)分別探究圖3、圖4中S1,S2,S3,S4四者之間的等量關(guān)系(S1,S2,S3,S4分別表示△ABP,△CBP,△CDP,△ADP的面積):
①如圖3,當(dāng)四邊形ABCD只有一對(duì)等高點(diǎn)A、C時(shí),你得到的一個(gè)結(jié)論是
 

②如圖4,當(dāng)四邊形ABCD沒(méi)有等高點(diǎn)時(shí),你得到的一個(gè)結(jié)論是
 

精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知,四邊形ABCD是菱形,AC=6,BD=8,求AB的長(zhǎng)和菱形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

34、如圖:在平行四邊形ABCD中,∠B=30°,AE⊥BC于點(diǎn)E,AF⊥DC的延長(zhǎng)線于點(diǎn)F,已知平行四邊形ABCD的周長(zhǎng)為40cm,且AE:AF=2:3.求平行四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知在四邊形ABCD中,AC與BD相交于點(diǎn)O,AB⊥AC,CD⊥BD.
(1)求證:△AOD∽△BOC;
(2)若sin∠ABO=
23
,S△AOD=4,求S△BOC的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知平行四邊形ABCD,E是邊AB的中點(diǎn),聯(lián)結(jié)AC、DE交于點(diǎn)O.記向量
AB
=
a
,
AD
=
b
,則向量
OE
=
1
6
a
-
1
3
b
1
6
a
-
1
3
b
(用向量
a
b
表示).

查看答案和解析>>

同步練習(xí)冊(cè)答案