在下列各圖形中,屬于軸對(duì)稱(chēng)變換的是

[  ]

A.

B.

C.

D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

28、利用平行線(xiàn)的性質(zhì)探究:
如圖,直線(xiàn)AC∥BD,連接AB,直線(xiàn)AC,BD及線(xiàn)段AB把平面分成①②③④四個(gè)部分,規(guī)定線(xiàn)上各點(diǎn)不屬于任何部分.當(dāng)動(dòng)點(diǎn)P落在某個(gè)部分時(shí),連接PA、PB,構(gòu)成∠PAC、∠APB、∠PBD三個(gè)角.當(dāng)動(dòng)點(diǎn)P落在第①部分時(shí),小明同學(xué)在研究∠PAC、∠APB、∠PBD三個(gè)角的數(shù)量關(guān)系時(shí),利用圖<1>,過(guò)點(diǎn)P作PQ∥BD,得出結(jié)論:∠APB=∠PAC+∠PBD.請(qǐng)你參考小明的方法解決下列問(wèn)題:
(1)當(dāng)動(dòng)點(diǎn)P落在第②部分時(shí),在圖<2>中畫(huà)出圖形,寫(xiě)出∠PAC、∠APB、∠PBD三個(gè)角的數(shù)量關(guān)系;
(2)當(dāng)動(dòng)點(diǎn)P落在第③部分時(shí),在圖<3>、圖<4>中畫(huà)出圖形,探究∠PAC、∠APB、∠PBD之間的數(shù)量關(guān)系,寫(xiě)出結(jié)論并選擇其中一種情形加以證明.

(1)當(dāng)動(dòng)點(diǎn)P落在第②部分時(shí)
∠APB=∠PAC+∠PBD

(2)當(dāng)動(dòng)點(diǎn)P落在第③部分時(shí)(如圖<3>)
∠PBD=∠APB+∠PAC

當(dāng)動(dòng)點(diǎn)P落在第③部分時(shí)(如圖<4>)
∠PAC=∠PBD+∠APB

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

利用平行線(xiàn)的性質(zhì)探究:
如圖,直線(xiàn)AC∥BD,連接AB,直線(xiàn)AC,BD及線(xiàn)段AB把平面分成①②③④四個(gè)部分,規(guī)定線(xiàn)上各點(diǎn)不屬于任何部分.當(dāng)動(dòng)點(diǎn)P落在某個(gè)部分時(shí),連接PA、PB,構(gòu)成∠PAC、∠APB、∠PBD三個(gè)角.當(dāng)動(dòng)點(diǎn)P落在第①部分時(shí),小明同學(xué)在研究∠PAC、∠APB、∠PBD三個(gè)角的數(shù)量關(guān)系時(shí),利用圖<1>,過(guò)點(diǎn)P作PQ∥BD,得出結(jié)論:∠APB=∠PAC+∠PBD.請(qǐng)你參考小明的方法解決下列問(wèn)題:
(1)當(dāng)動(dòng)點(diǎn)P落在第②部分時(shí),在圖<2>中畫(huà)出圖形,寫(xiě)出∠PAC、∠APB、∠PBD三個(gè)角的數(shù)量關(guān)系;
(2)當(dāng)動(dòng)點(diǎn)P落在第③部分時(shí),在圖<3>、圖<4>中畫(huà)出圖形,探究∠PAC、∠APB、∠PBD之間的數(shù)量關(guān)系,寫(xiě)出結(jié)論并選擇其中一種情形加以證明.

(1)當(dāng)動(dòng)點(diǎn)P落在第②部分時(shí)______.
(2)當(dāng)動(dòng)點(diǎn)P落在第③部分時(shí)(如圖<3>)______.
當(dāng)動(dòng)點(diǎn)P落在第③部分時(shí)(如圖<4>)______.

查看答案和解析>>

同步練習(xí)冊(cè)答案