【題目】如圖,在平面直角坐標(biāo)系中,把拋物線 先向右平移1個單位長度,再向下平移4個單位長度,得到拋物線 ,所得拋物線與x軸交于A、B兩點(點A在點B的左邊),與y軸交于點C,頂點為M.

1)寫出h、k的值及點AB的坐標(biāo);

2)判斷 的形狀,并計算其面積;

3)點P是拋物線上的一動點,在y軸上存在點Q,使以點AB、P、Q為頂點組成的四邊形是平行四邊形,求點P的坐標(biāo).

【答案】1 , , , ;(2是直角三角形,;(3)點P的坐標(biāo)為(4,5),(-4,21)(2,-3)

【解析】

1)根據(jù)左加右減,上加下減的方法求出函數(shù)解析式為 ,可得h、k的值,解方程可求出點A、B的坐標(biāo);

2)首先求得點C和點M的坐標(biāo),然后求得BC、CMBM的長,最后利用勾股定理逆定理判定直角三角形即可;

3)分兩AB為邊和AB為對角線兩種情況討論計算即可.

1)∵拋物線y=x2先向右平移1個單位,再向下平移4個單位,得到拋物線y=(x1)24,

h=1,k=4;

y=0,即(x1)24=0

解得x=1x=3

A(1,0),B(3,0);

2 ,得 ,

C的坐標(biāo)為(0,-3),點M的坐標(biāo)為(1,-4)

, , ,

,

是直角三角形,

3)由(1)知,拋物線

P是拋物線上一動點, 設(shè) ,

, , AB的中點N(1,0),

以點A、B、PQ為頂點組成的四邊形是平行四邊形,

分以下情況.

①當(dāng)AB為邊時, ,

-4,當(dāng)時,

;

當(dāng) 時, ,

;

②當(dāng)AB為對角線時,點NPQ的中點,

, ,

P的坐標(biāo)為(4,5),(-4,21)(2,-3).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,中,,的角平分線,點的中點,連接并延長到點,使,連接.

1)求證:;

2)判斷并證明四邊形的形狀;

3)為添加一個條件______,則四邊形是矩形(填空即可,不必說明理由).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,點C為⊙O上一點,AE和過點C的切線互相垂直,垂足為E,AE交⊙O于點D,直線ECAB的延長線于點P,連接ACBC

1)求證:AC平分∠BAD;

2)若AB=3,AC=2,求ECPB的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】修建隧道可以方便出行.如圖:,兩地被大山阻隔,由地到地需要爬坡到山頂地,再下坡到.若打通穿山隧道,建成直達(dá)兩地的公路,可以縮短從地到地的路程.已知:從坡面的坡度,從坡面的坡角,公里.

1)求隧道打通后從的總路程是多少公里?(結(jié)果保留根號)

2)求隧道打通后與打通前相比,從地到地的路程約縮短多少公里?(結(jié)果精確到0.01)(,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD的頂點ABx軸的正半軸上,反比例函數(shù)y=在第一象限內(nèi)的圖象與直線y=x交于點D,且反比例函數(shù)y=BC于點E,AD=3

1)求D點的坐標(biāo)及反比例函數(shù)的關(guān)系式;

2)若矩形的面積是24,請寫出CDE的面積(不需要寫解答過程).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某攔河壩橫截面原設(shè)計方案為梯形ABCD,其中ADBC,∠ABC=72°,為了提高攔河壩的安全性,現(xiàn)將壩頂寬度水平縮短10m,壩底寬度水平增加4m,使∠EFC=45°,請你計算這個攔河大壩的高度.(參考數(shù)據(jù):sin72°≈cos72°≈,tan72°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】重整行裝再出發(fā),馳而不息再爭創(chuàng)201858日蘭州市召開了新一輪全國文明城市創(chuàng)建啟動大會.某校為了更好地貫徹落實創(chuàng)建全國文明城市目標(biāo),舉辦了我是創(chuàng)城小主人的知識競賽.該校七年級、八年級分別有300人,現(xiàn)從中各隨機(jī)抽取10名同學(xué)的測試成績進(jìn)行調(diào)查分析,成績?nèi)缦拢?/span>

七年級

85

65

84

78

100

78

85

85

98

83

八年級

96

60

87

78

87

87

89

100

83

96

整理、描述數(shù)據(jù):

分?jǐn)?shù)段

七年級人數(shù)

1

2

5

2

八年級人數(shù)

1

1

5

3

分析數(shù)據(jù):

年級

平均數(shù)

中位數(shù)

眾數(shù)

84.1

_______

85

86.3

87

______

得出結(jié)論:

1)根據(jù)上述數(shù)據(jù),將表格補(bǔ)充完整;

2)估計該校七、八兩個年級學(xué)生在本次測試成績中可以取得優(yōu)秀的人數(shù)共有多少人?

3)你認(rèn)為哪個年級知識掌握的總體水平較好,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,把正方形鐵片OABC置于平面直角坐標(biāo)系中,頂點A的坐標(biāo)為(3,0),點P2,1)在正方形鐵片上,將正方形鐵片繞其右下角的頂點按順時針方向依次旋轉(zhuǎn),第一次旋轉(zhuǎn)至圖①位置,第二次旋轉(zhuǎn)至圖②位置……,則正方形鐵片連續(xù)旋轉(zhuǎn)2018次后,點P的坐標(biāo)為_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,拋物線y=mx2-2mx+2m≠0)與y軸交于點A,其對稱軸與x軸交于點B

1)求點AB的坐標(biāo);

2)點CDx軸上(點C在點D的左側(cè)),且與點B的距離都為2,若該拋物線與線段CD有兩個公共點,結(jié)合函數(shù)的圖象,求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案