【題目】如圖,二次函數(shù)y=x2﹣2x﹣3的圖象與x軸交于A、B兩點,與y軸交于點C,則下列說法錯誤的是( )
A. AB=4
B. ∠ABC=45°
C. 當(dāng)x>0時,y<﹣3
D. 當(dāng)x>1時,y隨x的增大而增大
【答案】C
【解析】
根據(jù)二次函數(shù)的圖象與性質(zhì)即可求出答案.
∵二次函數(shù)y=x2﹣2x﹣3=(x﹣1)2﹣4,∴當(dāng)y=0時,x1=﹣1,x2=3,∴點A的坐標(biāo)為(﹣1,0),點B的坐標(biāo)為(3,0),∴AB=4,故選項A正確.
∵當(dāng)x=0時,y=﹣3,∴OC=3.
∵點B(3,0),∠COB=90°,∴OB=3,∴OB=OC,∴∠OBC=45°,即∠ABC=45°,故選項B正確.
當(dāng)0<x<1時,﹣4<y<﹣3,當(dāng)x≥1時,y≥﹣4,故選項C錯誤.
當(dāng)x>1時,y隨x的增大而增大,故選項D正確.
故選C.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+1經(jīng)過點(2,6),且與直線y=x+1相交于A,B兩點,點A在y軸上,過點B作BC⊥x軸,垂足為點C(4,0).
(1)求拋物線的解析式;
(2)若P是直線AB上方該拋物線上的一個動點,過點P作PD⊥x軸于點D,交AB于點E,求線段PE的最大值;
(3)在(2)的條件,設(shè)PC與AB相交于點Q,當(dāng)線段PC與BE相互平分時,請求出點Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我縣在治理違建的過程中,某小區(qū)拆除了自建房,改建綠地.如圖,自建房占地是邊長為20m的正方形ABCD,改建的綠地是矩形AEFG,其中點E在AB上,點G在AD的延長線上,且DG=2BE.如果設(shè)BE的長為x(單位:m),綠地AEFG的面積為y(單位:m2),那么y與x的函數(shù)的解析式為_____,綠地AEFG的最大面積為______m2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,BD為圓O的直徑,直線ED為圓O的切線,A、C兩點在圓上,AC平分∠BAD且交BD于F點.若∠ADE=19°,則∠AFB的度數(shù)為何?( )
A. 97° B. 104° C. 116° D. 142°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是半圓O的直徑,C是AB延長線上一點,CD與半圓O相切于點D,連接AD,BD.
(1)求證:∠BAD=∠BDC;
(2)若sin∠BDC=,BC=2,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,直線y=kx+b(k≠0)與拋物線y=ax2﹣4ax+3a的對稱軸交于點A(m,﹣1),點A關(guān)于x軸的對稱點恰為拋物線的頂點.
(1)求拋物線的對稱軸及a的值;
(2)橫、縱坐標(biāo)都是整數(shù)的點叫做整點.記直線y=kx+b(k≠0)與拋物線圍成的封閉區(qū)域(不含邊界)為W.
①當(dāng)k=1時,直接寫出區(qū)域W內(nèi)的整點個數(shù);
②若區(qū)域W內(nèi)恰有3個整點,結(jié)合函數(shù)圖象,求b的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將函數(shù)y= (x-2)2+1的圖象沿y軸向上平移得到一條新函數(shù)的圖象,其中點A(1,m),B(4,n)平移后的對應(yīng)點分別為點A′,B′,若曲線段AB掃過的面積為9(圖中的陰影部分),則新圖象的函數(shù)表達(dá)式是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,下列結(jié)論:①abc>0;②2a+b>0;③b2﹣4ac>0;④a﹣b+c>0,其中正確的個數(shù)是( 。
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知⊙O的半徑為2,弦BC的長為,點A為弦BC所對優(yōu)弧上任意一點(B,C兩點除外).
(1)求∠BAC的度數(shù);
(2)求△ABC面積的最大值.
(參考數(shù)據(jù): ,,.)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com