如圖,一個(gè)圓與平面直角坐標(biāo)系中的x軸切于點(diǎn),與y軸交于B(0,4),C(0,16)兩點(diǎn),則該圓的直徑為_(kāi)__     _。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在單位長(zhǎng)度為1的正方形網(wǎng)格中,一段圓弧經(jīng)過(guò)網(wǎng)格的交點(diǎn)A、B、C.
(1)請(qǐng)完成如下操作:①以點(diǎn)O為原點(diǎn)、豎直和水平方向?yàn)檩S、網(wǎng)格邊長(zhǎng)為單位長(zhǎng),建立平面直角坐標(biāo)系;
②根據(jù)圖形提供的信息,標(biāo)出該圓弧所在圓的圓心D,并連接AD、CD.
(2)請(qǐng)?jiān)冢?)的基礎(chǔ)上,完成下列填空:
①寫出點(diǎn)的坐標(biāo):C
 
;D(
 
);
②⊙D的半徑=
 
(結(jié)果保留根號(hào));
③若扇形ADC是一個(gè)圓錐的側(cè)面展開(kāi)圖,則該圓錐的底面的面積為
 
;(結(jié)果保留π)
④若E(7,0),試判斷直線EC與⊙D的位置關(guān)系,并說(shuō)明你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

數(shù)學(xué)家們通過(guò)長(zhǎng)期的研究,得到了關(guān)于“等周問(wèn)題”的重要結(jié)論:在周長(zhǎng)相同的所有封閉平面曲線中,以圓所圍成的面積最大.
“等周問(wèn)題”雖然較為繁雜,但其根本思想基于下面2個(gè)事實(shí):
事實(shí)1:等周長(zhǎng)n邊形的面積,當(dāng)圖形為正n邊形時(shí),其面積最大;
事實(shí)2:等周長(zhǎng)n邊形的面積,當(dāng)邊數(shù)n越大時(shí),其面積也越大.
為了理解這些事實(shí)的合理性,曙光數(shù)學(xué)小組走出校門展開(kāi)了下列課題研究.請(qǐng)你幫助他們解決其中的一些問(wèn)題.
現(xiàn)有長(zhǎng)度為100m的籬笆(可彎曲圍成一個(gè)區(qū)域).
(1)如果用籬笆圍成一個(gè)長(zhǎng)方形雞場(chǎng),怎樣圍才能使雞場(chǎng)的面積最大?為什么?
(2)如果用籬笆圍成一個(gè)正五邊形雞場(chǎng),那么與(1)中的正方形雞場(chǎng)比較,哪個(gè)面積更大?請(qǐng)?jiān)谑聦?shí)1的基礎(chǔ)上證明事實(shí)2:“等周長(zhǎng)n邊形的面積,當(dāng)邊數(shù)n越大時(shí),其面積也越大.”
(3)利用事實(shí)1和事實(shí)2,請(qǐng)對(duì)“等周問(wèn)題”的重要結(jié)論作出較為合理的解釋.
(4)愛(ài)動(dòng)腦筋的小明提出一個(gè)問(wèn)題:如果借用一條充分長(zhǎng)的直墻,將籬笆圍成一個(gè)四邊形雞場(chǎng),為了使雞場(chǎng)的面積盡量大,所圍成的長(zhǎng)方形雞場(chǎng)的長(zhǎng)是寬的2倍(如圖).你覺(jué)得他講的是否有道理?你有沒(méi)有更好的方法,使圍成的四邊形雞場(chǎng)的面積更大?如果有,請(qǐng)說(shuō)明你的方法.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在單位長(zhǎng)度為1的正方形網(wǎng)格中,一段圓弧經(jīng)過(guò)網(wǎng)格的交點(diǎn)A、B、C.
(1)請(qǐng)完成如下操作:
①以點(diǎn)O為原點(diǎn)、豎直和水平方向所在的直線為坐標(biāo)軸、網(wǎng)格邊長(zhǎng)為單位長(zhǎng),建立平面直角坐標(biāo)系;②用直尺和圓規(guī)畫出該圓弧所在圓的圓心D的位置(不用寫作法,保留作圖痕跡),并連接AD、CD.
(2)請(qǐng)?jiān)冢?)的基礎(chǔ)上,完成下列問(wèn)題:
①寫出點(diǎn)的坐標(biāo):C
 
、D
 
;
②⊙D的半徑=
 
(結(jié)果保留根號(hào));
③若扇形ADC是一個(gè)圓錐的側(cè)面展開(kāi)圖,則該圓錐的底面面積為
 
(結(jié)果保留π);
④若E(7,0),試判斷直線EC與⊙D的位置關(guān)系并說(shuō)明你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•池州一模)我們知道:由于圓是中心對(duì)稱圖形,所以過(guò)圓心的任何一條直線都可以將圓分割成面積相等的兩部分(如圖1).
探索下列問(wèn)題:
(1)在如圖2給出的四個(gè)正方形中,各畫出一條直線(依次是:水平方向的直線、豎直方向的直線、與水平方向成45°角的直線和任意的直線),將每個(gè)正方形都分割成面積相等的兩部分;
(2)一條豎直方向的直線m以及任意的直線n,在由左向右平移的過(guò)程中,將正六邊形分成左右兩部分,其面積分別記為S1和S2
①請(qǐng)你在如圖3中相應(yīng)圖形下方的橫線上分別填寫S1與S2的數(shù)量關(guān)系式(用“<”,“=”,“>”連接);
②請(qǐng)你在如圖4中分別畫出反映S1與S2三種大小關(guān)系的直線n,并在相應(yīng)圖形下方的橫線上分別填寫S1與S2的數(shù)量關(guān)系式(用“<”,“=”,“>”連接).
(3)是否存在一條直線,將一個(gè)任意的平面圖形(如圖5)分割成面積相等的兩部分?請(qǐng)簡(jiǎn)略說(shuō)出理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在單位長(zhǎng)度為1的正方形網(wǎng)格中,一段圓弧經(jīng)過(guò)格點(diǎn)A、B、C.
【小題1】請(qǐng)完成如下操作:
①以點(diǎn)O為原點(diǎn)、豎直和水平方向所在的直線為坐標(biāo)軸、網(wǎng)格邊長(zhǎng)為單位長(zhǎng),建立平面直角坐標(biāo)系;②畫出該圓弧所在圓的圓心D的位置(不用寫作法,保留作圖痕跡),并連接AD、CD.
【小題2】請(qǐng)?jiān)冢?)的基礎(chǔ)上,完成下列問(wèn)題:
①寫出點(diǎn)的坐標(biāo):C _________(6,2)
、D ________;(2,0)
②⊙D的半徑為_(kāi)_______ 2 5
(結(jié)果保留根號(hào));
③若扇形ADC是一個(gè)圓錐的側(cè)面展開(kāi)圖,則該圓錐的側(cè)面面積為 ____________5π4
(結(jié)果保留π);
④若E(7,0),試判斷直線EC與⊙D的位置關(guān)系并說(shuō)明你的理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案