(2013•十堰)如圖,點D,E在△ABC的邊BC上,AB=AC,BD=CE.求證:AD=AE.
分析:利用等腰三角形的性質(zhì)得到∠B=∠C,然后證明△ABD≌△ACE即可證得結(jié)論.
解答:證明:∵AB=AC,
∴∠B=∠C,
在△ABD與△ACE中,
AB=AC
∠B=∠
BD=EC
C

∴△ABD≌△ACE(SAS),
∴AD=AE.
點評:本題考查了全等三角形的判定與性質(zhì)及等腰三角形的性質(zhì),解題的關鍵是利用等邊對等角得到∠B=∠C.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2013•十堰)如圖,是一組按照某種規(guī)律擺放成的圖案,則圖5中三角形的個數(shù)是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•十堰)如圖,在小山的東側(cè)A點有一個熱氣球,由于受西風的影響,以30米/分的速度沿與地面成75°角的方向飛行,25分鐘后到達C處,此時熱氣球上的人測得小山西側(cè)B點的俯角為30°,則小山東西兩側(cè)A、B兩點間的距離為
750
2
750
2
米.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•十堰)如圖,正三角形ABC的邊長是2,分別以點B,C為圓心,以r為半徑作兩條弧,設兩弧與邊BC圍成的陰影部分面積為S,當
2
≤r<2時,S的取值范圍是
π
2
-1≤S<
3
-
3
π
2
-1≤S<
3
-
3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•十堰)如圖1,△ABC中,CA=CB,點O在高CH上,OD⊥CA于點D,OE⊥CB于點E,以O為圓心,OD為半徑作⊙O.
(1)求證:⊙O與CB相切于點E;
(2)如圖2,若⊙O過點H,且AC=5,AB=6,連接EH,求△BHE的面積和tan∠BHE的值.

查看答案和解析>>

同步練習冊答案