【題目】在中,、,,用尺規(guī)作圖的方法在上確定一點,設(shè),下列作圖方法中,不能求出的長的作圖是( )
A.B.C.D.
【答案】D
【解析】
根據(jù)題意分別求出選項A,B,C中的PC的長,即可解決問題.
解:A、由題意PC=BC-PB=BC-(AB-AC)=8-(10-6)=4.
B、連接PA,由題意PA=PB,設(shè),PA=PB=y.
∵AC=6、BC=8,AB=10,
∴AB2=AC2+BC2,
∴∠ACB=90°,
∴PA2=AC2+PC2,
∴y 2=(8- y)2+62,
∴y = ,
∴PC=BC-PB=8- = .
C、作PH⊥AB于H.
由題意,PA平分∠BAC,
∵PH⊥AB,PC⊥AC,
∴PH=PC,設(shè)PH=PC=m,
∵S△ABC=S△ABP+S△APC,
∴ ACBC= ABPH+ ACPC,
∴6×8=10 m +6 m,
∴m =3,
∴PC=3,
故A,B,C中,能求出PC的長度,D中條件不確定,求不出PC的長度.
故選:D.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB=6,AC=BC=5,將△ABC繞點A按順時針方向旋轉(zhuǎn),得到△ADE,旋轉(zhuǎn)角為α(0°<α<180°),點B的對應(yīng)點為點D,點C的對應(yīng)點為點E,連接BD,BE.
(1)如圖,當(dāng)α=60°時,延長BE交AD于點F.
①求證:△ABD是等邊三角形;
②求證:BF⊥AD,AF=DF;
③請直接寫出BE的長;
(2)在旋轉(zhuǎn)過程中,過點D作DG垂直于直線AB,垂足為點G,連接CE,當(dāng)∠DAG=∠ACB,且線段DG與線段AE無公共點時,請直接寫出BE+CE的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,AB是半圓O的直徑,AC是弦,點P沿BA方向,從點B運動到點A,速度為1cm/s,若AB=10cm,點O到AC的距離為4cm.
(1)求弦AC的長;
(2)問經(jīng)過多長時間后,△APC是等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,左、右并排的兩棵樹AB和CD,小樹的高AB=6m,大樹的高CD=9m,小明估計自己眼睛距地面EF=1.5m,當(dāng)他站在F點時恰好看到大樹頂端C點.已知此時他與小樹的距離BF=2m,則兩棵樹之間的距離BD是( 。
A. 1m B. m C. 3m D. m
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點D、E為△ABC的邊BC上兩點.AD=AE,BD=CE,為了判斷∠B與∠C的大小關(guān)系,請你填空完成下面的推理過程,并在空白括號內(nèi)注明推理的依據(jù).
解:過點A作AH⊥BC,垂足為H.
∵在△ADE中,AD=AE(已知)
AH⊥BC(所作)
∴DH=EH(等腰三角形底邊上的高也是底邊上的中線)
又∵BD=CE(已知)
∴BD+DH=CE+EH(等式的性質(zhì))
即:BH=
又∵ (所作)
∴AH為線段 的垂直平分線
∴AB=AC(線段垂直平分線上的點到線段兩個端點的距離相等)
∴ (等邊對等角)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的個數(shù)( )
①近似數(shù)精確到十分位:
②在,,,中,最小的數(shù)是
③如圖①所示,在數(shù)軸上點所表示的數(shù)為
④反證法證明命題“一個三角形中最多有一個鈍角”時,首先應(yīng)假設(shè)“這個三角形中有兩個鈍角”
⑤如圖②,在內(nèi)一點到這三條邊的距離相等,則點是三個角平分線的交點
圖① 圖②
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c與x軸相交于點A(﹣3,0),B(1,0),與y軸相交于(0,﹣),頂點為P.
(1)求拋物線解析式;
(2)在拋物線是否存在點E,使△ABP的面積等于△ABE的面積?若存在,求出符合條件的點E的坐標(biāo);若不存在,請說明理由;
(3)坐標(biāo)平面內(nèi)是否存在點F,使得以A、B、P、F為頂點的四邊形為平行四邊形?直接寫出所有符合條件的點F的坐標(biāo),并求出平行四邊形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:一次函數(shù)的圖象與反比例函數(shù)的圖象交于、兩點.
求反比例函數(shù)和一次函數(shù)的解析式;
求的面積;
根據(jù)圖象直接寫出,當(dāng)為何值時,.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某服裝店購進一批甲、乙兩種款型時尚的恤衫,其中甲種款型共用7800元,乙種款型共用6000元,甲種款型的件數(shù)是乙種款型件數(shù)的1.5倍,甲種款型每件的進價比乙種款型每件的進價少8元.
(1)甲、乙兩種款型的恤衫各購進多少件?
(2)若甲種款型恤衫每件售價比乙種款型恤衫的每件售價少10元,且這批恤衫全部售出后,商店獲利不少于6700元,則甲種恤衫每件售價至少多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com