關(guān)于x的一元二次方程4x2+4(m-1)x+m2=0
(1)當(dāng)m在什么范圍取值時(shí),方程有兩個(gè)實(shí)數(shù)根?
(2)設(shè)方程有兩個(gè)實(shí)數(shù)根x1,x2,問m為何值時(shí),?
(3)若方程有兩個(gè)實(shí)數(shù)根x1,x2,問x1和x2能否同號(hào)?若能同號(hào),請求出相應(yīng)m的取值范圍;若不能同號(hào),請說明理由.
【答案】分析:(1)根據(jù)根的判別式,求出不等式[4(m-1)]2-4×4m2≥0的解集即可;
(2)根據(jù)根與系數(shù)的關(guān)系得出x1+x2=-=1-m,x1•x2=,化成(x1+x22-2x1•x2=17代入求出即可;
(3)根據(jù)當(dāng)m≤時(shí),方程有兩個(gè)實(shí)數(shù)根和x1+x2=-=1-m,x1•x2=,推出1-m>0,>0,即可得出答案.
解答:解:(1)∵當(dāng)△=[4(m-1)]2-4×4m2=-8m+4≥0時(shí),方程有兩個(gè)實(shí)數(shù)根,
即m≤,
∴當(dāng)m≤時(shí),方程有兩個(gè)實(shí)數(shù)根;

(2)根據(jù)根與系數(shù)關(guān)系得:x1+x2=-=1-m,x1•x2=,
∵x12+x22=17,
∴(x1+x22-2x1•x2=17,
∴(1-m)2-=17<
解得:m1=8,m2=-4,
∵當(dāng)m≤時(shí),方程有兩個(gè)實(shí)數(shù)根,
∴m=-4;

(3)∵由(1)知當(dāng)m≤時(shí),方程有兩個(gè)實(shí)數(shù)根,由(2)知,x1•x2=
>0,
∴當(dāng)m≠0,且m≤時(shí),x1和x2能同號(hào),
即m的取值范圍是:m≠0,且m≤
點(diǎn)評(píng):本題考查了根的判別式和根與系數(shù)的關(guān)系,注意:一元二次方程根的情況與判別式△的關(guān)系及根與系數(shù)的關(guān)系:
(1)△>0?方程有兩個(gè)不相等的實(shí)數(shù)根;
(2)△=0?方程有兩個(gè)相等的實(shí)數(shù)根;
(3)△<0?方程沒有實(shí)數(shù)根.
(4)若一元二次方程有實(shí)數(shù)根,則x1+x2=-,x1•x2=
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•北侖區(qū)二模)若關(guān)于x的一元二次方程a(x+m)2=3兩個(gè)實(shí)根為x1=-1,x2=3,則拋物線y=a(x+m-2)2-3與x軸的交點(diǎn)橫坐標(biāo)分別是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知方程(m-2)xm2-5m-8+(m-3)x+5=0是關(guān)于x的一元二次方程,則m=
65
2
65
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•沈陽)若關(guān)于x的一元二次方程x2+4x+a=0有兩個(gè)不相等的實(shí)數(shù)根,則a的取值范圍是
a<4
a<4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•蘭州一模)若x1,x2是關(guān)于x的一元二次方程ax2+bx+c=0(a≠0)的兩個(gè)根,則方程的兩個(gè)根x1,x2和系數(shù)a,b,c有如下關(guān)系:x1+x2=-
b
a
,x1•x2=
c
a
,把它們稱為一元二次方程根與系數(shù)關(guān)系定理,請利用此定理解答一下問題:
已知x1,x2是一員二次方程(m-3)x2+2mx+m=0的兩個(gè)實(shí)數(shù)根.
(1)是否存在實(shí)數(shù)m,使-x1+x1x2=4+x2成立?若存在,求出m的值,若不存在,請你說明理由;
(2)若|x1-x2|=
3
,求m的值和此時(shí)方程的兩根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•瀘州)若關(guān)于x的一元二次方程kx2-2x-1=0有兩個(gè)不相等的實(shí)數(shù)根,則實(shí)數(shù)k的取值范圍是(  )

查看答案和解析>>

同步練習(xí)冊答案