如圖,在Rt△ABC中,AB=AC,∠BAC=90,O為BC的中點(diǎn)。
(1)寫(xiě)出點(diǎn)O到△ABC的三個(gè)頂點(diǎn)A、B、C的距離的關(guān)系(不要求證明)
(2)如果點(diǎn)M、N分別在線(xiàn)段AB、AC上移動(dòng),在移動(dòng)過(guò)程中保持AN=BM,請(qǐng)判斷△OMN的形狀,請(qǐng)證明你的結(jié)論。
(1)OA=OB=OC(2)△OMN的形狀是等腰直角三角形,證明見(jiàn)解析
【解析】解:(1)點(diǎn)O到△ABC的三個(gè)頂點(diǎn)A、B、C的距離的關(guān)系是OA=OB=OC;
(2)△OMN的形狀是等腰直角三角形,
證明:∵△ABC中,AB=AC,∠BAC=90°,O為BC中點(diǎn),
∴OA=OB=OC,AO平分∠BAC,AO⊥BC,
∴∠AOB=90°,∠B=∠C=45°,∠BAO=∠CAO=45°,
∴∠CAO=∠B,
在△BOM和△AON中
AN=BM,∠CAO=∠B,OA=OB
∴△BOM≌△AON(SAS),
∴OM=ON,∠AON=∠BOM,
∵∠AOB=∠BOM+∠AOM=90°,
∴∠AON+∠AOM=90°,即∠MON=90°,
∴△OMN是等腰直角三角形.(1)根據(jù)直角三角形斜邊上中線(xiàn)性質(zhì)推出即可;
(2)根據(jù)等腰三角形性質(zhì)求出∠B=∠C=45°=∠BOA=∠CAO,根據(jù)SAS證△BOM≌△AON,推出OM=ON,∠AON=∠BOM,求出∠MON=90°,根據(jù)等腰直角三角形的判定推出即可.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
5 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com