【題目】如圖,拋物線y=﹣x2+bx+c與x軸交于A、B兩點,直線y=x+經(jīng)過點A,與拋物線的另一個交點為點C(3,m),線段PQ在線段AB上移動,PQ=1,分別過點P、Q作x軸的垂線,交拋物線于E、F,交直線于D、G.
(1)求拋物線的解析式;
(2)設四邊形DEFG的面積為S,求S的最大值;
(3)在線段PQ的移動過程中,以D,E,F,G為頂點的四邊形是平行四邊形時,求點P的坐標.
【答案】(1)y=﹣x2+x+2;(2)當m=時,S的最大值為:;(3)點P(1,0).
【解析】
(1)直線經(jīng)過點A、C,則點A(-1,0)、(3,2),將點A、C的坐標代入拋物線表達式,即可求解;
(2)由 ,即可求解;
(3)線段PQ在線段AB上移動,出現(xiàn)平行四邊形時,只能是在AC之上,即:DE=FG,即可求解.
解:(1)直線y=x+經(jīng)過點A、C,則點A(﹣1,0)、(3,2),
將點A、C的坐標代入拋物線表達式得: ,
解得: ,
故拋物線的表達式為:y=﹣x2+x+2;
(2)設點P(m,0),則點Q(m+1,0),D(m,m+),點G(m+1,m+1),點E(m,﹣m2+m+2)、點F(m+1,﹣m2+m+3),
S= (DE+FG)×PQ
∵ ,
故S有最大值,當m=時,S的最大值為:;
(3)線段PQ在線段AB上移動,出現(xiàn)平行四邊形時,只能是在AC之上,
即:DE=FG,由(2)得: ,
解得:m=1,
即點P(1,0).
科目:初中數(shù)學 來源: 題型:
【題目】初中生對待學習的態(tài)度一直是教育工作者關注的問題之一.為此某市教育局對該市部分學校的八年級學生對待學習的態(tài)度進行了一次抽樣調查(把學習態(tài)度分為三個層級,A級:對學習很感興趣;B級:對學習較感興趣;C級:對學習不感興趣),并將調查結果繪制成圖①和圖②的統(tǒng)計圖(不完整).請根據(jù)圖中提供的信息,解答下列問題:
(1)此次抽樣調查中,共調查了 名學生;
(2)將圖①補充完整;
(3)求出圖②中C級所占的圓心角的度數(shù);
(4)根據(jù)抽樣調查結果,請你估計該市近20000名初中生中大約有多少名學生學習態(tài)度達標(達標包括A級和B級)?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下面是“用三角板畫圓的切線”的畫圖過程.
如圖1,已知圓上一點A,畫過A點的圓的切線.
畫法:(1)如圖2,將三角板的直角頂點放在圓上任一點C(與點A不重合)處,使其一直角邊經(jīng)過點A,另一條直角邊與圓交于B點,連接AB;
(2)如圖3,將三角板的直角頂點與點A重合,使一條直角邊經(jīng)過點B,畫出另一條直角邊所在的直線AD.
所以直線AD就是過點A的圓的切線.
請回答:該畫圖的依據(jù)是_______________________________________________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知如圖,直線y=﹣ x+4 與x軸相交于點A,與直線y= x相交于點P.
(1)求點P的坐標;
(2)動點E從原點O出發(fā),沿著O→P→A的路線向點A勻速運動(E不與點O、A重合),過點E分別作EF⊥x軸于F,EB⊥y軸于B.設運動t秒時, F的坐標為(a,0),矩形EBOF與△OPA重疊部分的面積為S.直接寫出: S與a之間的函數(shù)關系式
(3)若點M在直線OP上,在平面內是否存在一點Q,使以A,P,M,Q為頂點的四邊形為矩形且滿足矩形兩邊AP:PM之比為1: 若存在直接寫出Q點坐標。若不存在請說明理由。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,直線ABy=kx﹣1分別交x軸、y軸于點A、B,直線CDy=x+2分別交x軸、y軸于點D、C,且直線AB、CD交于點E,E的橫坐標為﹣6.
(1)如圖①,求直線AB的解析式;
(2)如圖②,點P為直線BA第一象限上一點,過P作y軸的平行線交直線CD于G,交x軸于F,在線段PG取點N,在線段AF上取點Q,使GN=QF,在DG上取點M,連接MN、QN,若∠GMN=∠QNF,求的值;
(3)在(2)的條件下,點E關于x軸對稱點為T,連接MP、TQ,若MP∥TQ,且GN:NP=4:3,求點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了了解某校學生對以下四個電視節(jié)目:最強大腦、中國詩詞大會、朗讀者、出彩中國人的喜愛情況,隨機抽取了部分學生進行調查,要求每名學生選出并且只能選出一個自己最喜愛的節(jié)目,根據(jù)調查結果,繪制了如下兩幅不完整的統(tǒng)計圖.
請你根據(jù)圖中所提供的信息,完成下列問題:
本次調查的學生人數(shù)為______;
在扇形統(tǒng)計圖中,A部分所占圓心角的度數(shù)為______;
請將條形統(tǒng)計圖補充完整;
若該校共有3000名學生,估計該校最喜愛中國詩詞大會的學生有多少名.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】2019年1月3日,嫦娥四號探測器自主著落在月球背面,實現(xiàn)人類探測器首次月背軟著陸.當時,中國已提前發(fā)射的“鵲橋”中繼星正在地球、月球延長線上的L2點(第二拉格朗日點)附近,沿L2點的動態(tài)平衡軌道飛行,為嫦娥四號著陸器和月球車提供地球、月球中繼通信支持,保障嫦娥四號任務的完成與實施.如圖,已知月球到地球的平均距離約為38萬公里,L2點到月球的平均距離約為6.5萬公里.某刻,測得線段CL2與AL2垂直,∠CBL2=56°,則下列計算鵲橋中繼星到地球的距離AC方法正確的是( )
A.B.
C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC內接于⊙O,,點為上的動點,且.
(1)求的長度;
(2)在點D運動的過程中,弦AD的延長線交BC的延長線于點E,問ADAE的值是否變化?若不變,請求出ADAE的值;若變化,請說明理由.
(3)在點D的運動過程中,過A點作AH⊥BD,求證:.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,矩形OABC的頂點A在x軸上,頂點C在y軸上,D是BC的中點,過點D的反比例函數(shù)圖象交AB于E點,連接DE.若OD=5,tan∠COD=.
(1)求過點D的反比例函數(shù)的解析式;
(2)求△DBE的面積;
(3)x軸上是否存在點P使△OPD為直角三角形?若存在,請直接寫出P點的坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com